Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression
Tài liệu tham khảo
Allassonnière, 2008, 2008. MAP estimation of statistical deformable templates via nonlinear mixed effects models: deterministic and stochastic approaches, 80
Apostolova, 2010, Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects, NeuroImage, 51, 488, 10.1016/j.neuroimage.2009.12.125
Ashburner, 2011, Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation, NeuroImage, 55, 954, 10.1016/j.neuroimage.2010.12.049
Avants, 2004, Geodesic estimation for large deformation anatomical shape averaging and interpolation, NeuroImage, 23, S139, 10.1016/j.neuroimage.2004.07.010
Baldassarre, 2012, Structured sparsity models for brain decoding from FMRI data, 5
Beck, 2009, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18, 2419, 10.1109/TIP.2009.2028250
Beg, 2006, Computing an average anatomical atlas using LDDMM and geodesic shooting, 1116
Beg, 2005, Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vis., 61, 139, 10.1023/B:VISI.0000043755.93987.aa
Bhatia, 2004, Consistent groupwise non-rigid registration for atlas construction, vol. 1, 908
Bossa, 2010, On changing coordinate systems for longitudinal tensor-based morphometry
Chupin, 2007, Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease, NeuroImage, 34, 996, 10.1016/j.neuroimage.2006.10.035
Chupin, 2009, Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI, Hippocampus, 19, 579, 10.1002/hipo.20626
Cuingnet, 2011, Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database, NeuroImage, 56, 766, 10.1016/j.neuroimage.2010.06.013
Cuingnet, 2012, Spatial and anatomical regularization of SVM: a general framework for neuroimaging data, IEEE Trans. Pattern Anal. Mach. Intell.
Desikan, 2009, Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease, Brain, 132, 2048, 10.1093/brain/awp123
Durrleman, 2013, Sparse adaptive parameterization of variability in image ensembles, Int. J. Comput. Vis., 101, 161, 10.1007/s11263-012-0556-1
Fan, 2007, COMPARE: classification of morphological patterns using adaptive regional elements, IEEE Trans. Med. Imaging, 26, 93, 10.1109/TMI.2006.886812
Fan, 2008, Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline, NeuroImage, 39, 1731, 10.1016/j.neuroimage.2007.10.031
Fan, 2008, Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study, NeuroImage, 41, 277, 10.1016/j.neuroimage.2008.02.043
Fiot, 2012, Local vs global descriptors of hippocampus shape evolution for Alzheimer's longitudinal population analysis, 13
Fletcher, 2004, Principal geodesic analysis for the study of nonlinear statistics of shape, IEEE Trans. Med. Imaging, 995, 10.1109/TMI.2004.831793
Fréchet, 1948, Les éléments aléatoires de nature quelconque dans un espace distancie, Ann. Inst. Henri Poincaré, 10, 215
Frisoni, 2008, Mapping local hippocampal changes in Alzheimer's disease and normal ageing with mri at 3 tesla, Brain, 131, 3266, 10.1093/brain/awn280
Gerardin, 2009, Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging, NeuroImage, 47, 1476, 10.1016/j.neuroimage.2009.05.036
Gramfort, 2013, Identifying predictive regions from fMRI with TV-L1 prior
Grosenick, 2013, Interpretable whole-brain prediction analysis with GraphNet, NeuroImage, 72, 304, 10.1016/j.neuroimage.2012.12.062
Gutman, 2009, Disease classification with hippocampal shape invariants, Hippocampus, 19, 572, 10.1002/hipo.20627
Hoerl, 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55, 10.1080/00401706.1970.10488634
Jenatton, 2012, Multiscale mining of fMRI data with hierarchical structured sparsity, SIAM J. Imaging Sci., 5, 835, 10.1137/110832380
Jia, 2010, Absorb: atlas building by self-organized registration and bundling, NeuroImage, 51, 1057, 10.1016/j.neuroimage.2010.03.010
Joshi, 2004, Unbiased diffeomorphic atlas construction for computational anatomy, NeuroImage, 23, 10.1016/j.neuroimage.2004.07.068
Klöppel, 2008, Automatic classification of MR scans in Alzheimer's disease, Brain, 131, 681, 10.1093/brain/awm319
Lao, 2004, Morphological classification of brains via high-dimensional shape transformations and machine learning methods, NeuroImage, 21, 46, 10.1016/j.neuroimage.2003.09.027
Lewis, 2012, Nonsmooth optimization via quasi-Newton methods, Math. Program., 1
Ma, 2008, Bayesian template estimation in computational anatomy, NeuroImage, 42, 252, 10.1016/j.neuroimage.2008.03.056
Magnin, 2009, Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI, Neuroradiology, 51, 73, 10.1007/s00234-008-0463-x
Michel, 2011, Total variation regularization for fMRI-based prediction of behaviour, IEEE Trans. Med. Imaging, 30, 1328, 10.1109/TMI.2011.2113378
Miller, 2006, Geodesic shooting for computational anatomy, J. Math. Imaging Vis., 24, 209, 10.1007/s10851-005-3624-0
Modat, 2010, Fast free-form deformation using graphics processing units, Comput. Methods Programs Biomed., 98, 278, 10.1016/j.cmpb.2009.09.002
Mueller, 2005, The Alzheimer's disease neuroimaging initiative, Neuroimaging Clin. N. Am., 15, 869, 10.1016/j.nic.2005.09.008
Ng, 2011, Generalized sparse regularization with application to fMRI brain decoding, vol. 6801, 612
Niethammer, 2011, Geodesic regression for image time-series, Med. Image Comput. Comput. Assist Interv., 14, 655
Ourselin, 2001, Reconstructing a 3D structure from serial histological sections, Image Vis. Comput., 19, 25, 10.1016/S0262-8856(00)00052-4
Pennec, 1999, Probabilities and statistics on Riemannian manifolds: basic tools for geometric measurements, 194
Pennec, 2006, Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements, J. Math. Imaging Vis., 25, 127, 10.1007/s10851-006-6228-4
Qiu, 2008, Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type, NeuroImage, 40, 68, 10.1016/j.neuroimage.2007.11.041
Querbes, 2009, Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve, Brain, 132, 2036, 10.1093/brain/awp105
Raguet, 2013, A generalized forward–backward splitting, SIAM J. Imaging Sci., 6, 1199, 10.1137/120872802
Risser, 2011, Simultaneous multiscale registration using large deformation diffeomorphic metric mapping, IEEE Trans. Med. Imaging, 30, 1746, 10.1109/TMI.2011.2146787
Seghers, 2004, Construction of a brain template from MR images using state-of-the-art registration and segmentation techniques, vol. 3216, 696
Shen, 2012, Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models, NeuroImage, 59, 2155, 10.1016/j.neuroimage.2011.10.014
Singh, 2010, Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures, vol. 6363, 529
Tibshirani, 1994, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B, 58, 267
Vaillant, 2004, Statistics on diffeomorphisms via tangent space representations, NeuroImage, 23, S161, 10.1016/j.neuroimage.2004.07.023
Vemuri, 2008, Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies, NeuroImage, 39, 1186, 10.1016/j.neuroimage.2007.09.073
Vialard, 2011
Vialard, 2012, Diffeomorphic 3D Image Registration via Geodesic Shooting using an Efficient Adjoint Calculation, Int. J. Comput. Vis., 97, 229, 10.1007/s11263-011-0481-8
Vialard, 2012
Wang, 2007, Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type, IEEE Trans. Med. Imaging, 26, 462, 10.1109/TMI.2006.887380
Younes, 2007, Jacobi fields in groups of diffeomorphisms and applications, Q. Appl. Math., 65, 113, 10.1090/S0033-569X-07-01027-5
Yushkevich, 2010, Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3T MRI data, NeuroImage, 50, 434, 10.1016/j.neuroimage.2009.12.007
Zou, 2005, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B, 67, 301, 10.1111/j.1467-9868.2005.00503.x