Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression

NeuroImage: Clinical - Tập 4 - Trang 718-729 - 2014
Jean-Baptiste Fiot1,2, Hugo Raguet2, Laurent Risser3, Laurent D. Cohen2, Jurgen Fripp4, François-Xavier Vialard2
1IBM Research, Smarter Cities Technology Centre, Damastown, Dublin 15, Ireland
2CEREMADE, UMR 7534 CNRS, Université Paris Dauphine, PSL★, France
3CNRS, Institut de Mathématiques de Toulouse, UMR 5219, France
4CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre — BioMedIA, Royal Brisbane and Women's Hospital, Herston, QLD, Australia

Tài liệu tham khảo

Allassonnière, 2008, 2008. MAP estimation of statistical deformable templates via nonlinear mixed effects models: deterministic and stochastic approaches, 80 Apostolova, 2010, Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects, NeuroImage, 51, 488, 10.1016/j.neuroimage.2009.12.125 Ashburner, 2011, Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation, NeuroImage, 55, 954, 10.1016/j.neuroimage.2010.12.049 Avants, 2004, Geodesic estimation for large deformation anatomical shape averaging and interpolation, NeuroImage, 23, S139, 10.1016/j.neuroimage.2004.07.010 Baldassarre, 2012, Structured sparsity models for brain decoding from FMRI data, 5 Beck, 2009, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18, 2419, 10.1109/TIP.2009.2028250 Beg, 2006, Computing an average anatomical atlas using LDDMM and geodesic shooting, 1116 Beg, 2005, Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vis., 61, 139, 10.1023/B:VISI.0000043755.93987.aa Bhatia, 2004, Consistent groupwise non-rigid registration for atlas construction, vol. 1, 908 Bossa, 2010, On changing coordinate systems for longitudinal tensor-based morphometry Chupin, 2007, Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease, NeuroImage, 34, 996, 10.1016/j.neuroimage.2006.10.035 Chupin, 2009, Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI, Hippocampus, 19, 579, 10.1002/hipo.20626 Cuingnet, 2011, Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database, NeuroImage, 56, 766, 10.1016/j.neuroimage.2010.06.013 Cuingnet, 2012, Spatial and anatomical regularization of SVM: a general framework for neuroimaging data, IEEE Trans. Pattern Anal. Mach. Intell. Desikan, 2009, Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease, Brain, 132, 2048, 10.1093/brain/awp123 Durrleman, 2013, Sparse adaptive parameterization of variability in image ensembles, Int. J. Comput. Vis., 101, 161, 10.1007/s11263-012-0556-1 Fan, 2007, COMPARE: classification of morphological patterns using adaptive regional elements, IEEE Trans. Med. Imaging, 26, 93, 10.1109/TMI.2006.886812 Fan, 2008, Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline, NeuroImage, 39, 1731, 10.1016/j.neuroimage.2007.10.031 Fan, 2008, Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study, NeuroImage, 41, 277, 10.1016/j.neuroimage.2008.02.043 Fiot, 2012, Local vs global descriptors of hippocampus shape evolution for Alzheimer's longitudinal population analysis, 13 Fletcher, 2004, Principal geodesic analysis for the study of nonlinear statistics of shape, IEEE Trans. Med. Imaging, 995, 10.1109/TMI.2004.831793 Fréchet, 1948, Les éléments aléatoires de nature quelconque dans un espace distancie, Ann. Inst. Henri Poincaré, 10, 215 Frisoni, 2008, Mapping local hippocampal changes in Alzheimer's disease and normal ageing with mri at 3 tesla, Brain, 131, 3266, 10.1093/brain/awn280 Gerardin, 2009, Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging, NeuroImage, 47, 1476, 10.1016/j.neuroimage.2009.05.036 Gramfort, 2013, Identifying predictive regions from fMRI with TV-L1 prior Grosenick, 2013, Interpretable whole-brain prediction analysis with GraphNet, NeuroImage, 72, 304, 10.1016/j.neuroimage.2012.12.062 Gutman, 2009, Disease classification with hippocampal shape invariants, Hippocampus, 19, 572, 10.1002/hipo.20627 Hoerl, 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55, 10.1080/00401706.1970.10488634 Jenatton, 2012, Multiscale mining of fMRI data with hierarchical structured sparsity, SIAM J. Imaging Sci., 5, 835, 10.1137/110832380 Jia, 2010, Absorb: atlas building by self-organized registration and bundling, NeuroImage, 51, 1057, 10.1016/j.neuroimage.2010.03.010 Joshi, 2004, Unbiased diffeomorphic atlas construction for computational anatomy, NeuroImage, 23, 10.1016/j.neuroimage.2004.07.068 Klöppel, 2008, Automatic classification of MR scans in Alzheimer's disease, Brain, 131, 681, 10.1093/brain/awm319 Lao, 2004, Morphological classification of brains via high-dimensional shape transformations and machine learning methods, NeuroImage, 21, 46, 10.1016/j.neuroimage.2003.09.027 Lewis, 2012, Nonsmooth optimization via quasi-Newton methods, Math. Program., 1 Ma, 2008, Bayesian template estimation in computational anatomy, NeuroImage, 42, 252, 10.1016/j.neuroimage.2008.03.056 Magnin, 2009, Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI, Neuroradiology, 51, 73, 10.1007/s00234-008-0463-x Michel, 2011, Total variation regularization for fMRI-based prediction of behaviour, IEEE Trans. Med. Imaging, 30, 1328, 10.1109/TMI.2011.2113378 Miller, 2006, Geodesic shooting for computational anatomy, J. Math. Imaging Vis., 24, 209, 10.1007/s10851-005-3624-0 Modat, 2010, Fast free-form deformation using graphics processing units, Comput. Methods Programs Biomed., 98, 278, 10.1016/j.cmpb.2009.09.002 Mueller, 2005, The Alzheimer's disease neuroimaging initiative, Neuroimaging Clin. N. Am., 15, 869, 10.1016/j.nic.2005.09.008 Ng, 2011, Generalized sparse regularization with application to fMRI brain decoding, vol. 6801, 612 Niethammer, 2011, Geodesic regression for image time-series, Med. Image Comput. Comput. Assist Interv., 14, 655 Ourselin, 2001, Reconstructing a 3D structure from serial histological sections, Image Vis. Comput., 19, 25, 10.1016/S0262-8856(00)00052-4 Pennec, 1999, Probabilities and statistics on Riemannian manifolds: basic tools for geometric measurements, 194 Pennec, 2006, Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements, J. Math. Imaging Vis., 25, 127, 10.1007/s10851-006-6228-4 Qiu, 2008, Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type, NeuroImage, 40, 68, 10.1016/j.neuroimage.2007.11.041 Querbes, 2009, Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve, Brain, 132, 2036, 10.1093/brain/awp105 Raguet, 2013, A generalized forward–backward splitting, SIAM J. Imaging Sci., 6, 1199, 10.1137/120872802 Risser, 2011, Simultaneous multiscale registration using large deformation diffeomorphic metric mapping, IEEE Trans. Med. Imaging, 30, 1746, 10.1109/TMI.2011.2146787 Seghers, 2004, Construction of a brain template from MR images using state-of-the-art registration and segmentation techniques, vol. 3216, 696 Shen, 2012, Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models, NeuroImage, 59, 2155, 10.1016/j.neuroimage.2011.10.014 Singh, 2010, Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures, vol. 6363, 529 Tibshirani, 1994, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B, 58, 267 Vaillant, 2004, Statistics on diffeomorphisms via tangent space representations, NeuroImage, 23, S161, 10.1016/j.neuroimage.2004.07.023 Vemuri, 2008, Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies, NeuroImage, 39, 1186, 10.1016/j.neuroimage.2007.09.073 Vialard, 2011 Vialard, 2012, Diffeomorphic 3D Image Registration via Geodesic Shooting using an Efficient Adjoint Calculation, Int. J. Comput. Vis., 97, 229, 10.1007/s11263-011-0481-8 Vialard, 2012 Wang, 2007, Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type, IEEE Trans. Med. Imaging, 26, 462, 10.1109/TMI.2006.887380 Younes, 2007, Jacobi fields in groups of diffeomorphisms and applications, Q. Appl. Math., 65, 113, 10.1090/S0033-569X-07-01027-5 Yushkevich, 2010, Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3T MRI data, NeuroImage, 50, 434, 10.1016/j.neuroimage.2009.12.007 Zou, 2005, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B, 67, 301, 10.1111/j.1467-9868.2005.00503.x