Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khớp điểm có chiều dài: Một ví dụ về điều kiện phản thực được điều chỉnh cho sự phân nhóm theo chiều dọc
Tóm tắt
Xét đến những thách thức khi thực hiện các nghiên cứu thực nghiệm trong lĩnh vực tội phạm học và tư pháp hình sự, khớp điểm tương ứng (PSM) đại diện cho một trong những kỹ thuật được sử dụng phổ biến nhất để đánh giá hiệu quả của các điều kiện điều trị đối với hành vi trong tương lai. Tuy nhiên, các phiên bản hiện tại của PSM không điều chỉnh cho tác động của sự phân nhóm theo chiều dọc đối với sự tiếp xúc của người tham gia với các điều kiện điều trị. Nghiên cứu hiện tại trình bày và đánh giá khớp điểm có chiều dài (LPSM) như một phương pháp thay thế để đánh giá tác động của điều kiện điều trị đối với hành vi trong tương lai. LPSM điều chỉnh cho tác động của sự phân nhóm theo chiều dọc (tức là, sai số nhóm) bằng cách giả định rằng mối liên hệ giữa một dự đoán cắt ngang và một điều kiện điều trị khác nhau tùy thuộc vào thời điểm điều trị được thực hiện. Hai bước chung đã được thực hiện để đánh giá tính hợp lệ của LPSM. Đầu tiên, chúng tôi thực hiện một loạt các phân tích mô phỏng để minh họa phương pháp LPSM. Thứ hai, chúng tôi tiếp tục minh họa phương pháp này bằng việc sử dụng dữ liệu từ 63.899 tù nhân bị giam giữ trong các nhà tù ở Ohio, đánh giá tác động của chương trình nhà tù đối với tỷ lệ tái phạm trong vòng ba năm sau khi thả ra. Những sự khác biệt trong hiệu ứng điều trị được so sánh giữa PSM cắt ngang và LPSM. Các phân tích mô phỏng và minh họa đã tạo ra bằng chứng về sự khác biệt trong kết quả giữa LPSM và PSM cắt ngang. LPSM dường như cung cấp sự điều chỉnh tốt hơn cho sự phân nhóm theo chiều dọc so với PSM cắt ngang. LPSM cung cấp một lựa chọn hữu ích cho PSM cắt ngang khi xác suất tiếp xúc với điều kiện điều trị thay đổi theo thời điểm điều trị được thực hiện.
Từ khóa
#khớp điểm tương ứng #nghiên cứu thực nghiệm #tội phạm học #tư pháp hình sự #phân nhóm theo chiều dọc #tỷ lệ tái phạm #điều trị.Tài liệu tham khảo
Andrews DA, Bonta J (2010) The psychology of criminal conduct, 5th edn. Matthew Beder & Company INC., New Providence
Apel RJ, Sweeten G (2010) Propensity score matching in criminology and criminal justice. In: Piquero AR, Weisburd D (eds) Handbook of quantitative criminology. Springer, New York, pp 543–562
Baglivio MT, Jackowski K, Greenwald MA, Wolff KT (2014) Comparison of multisystemic therapy and functional family therapy effectiveness: A multiyear statewide propensity score matching analysis of juvenile offenders. Crim Justice Behav 41:1033–1056
Bales W, Mann K, Blomberg T, Gaes G, Barrick K, Dhungana K, McManus B (2012) Quantitative and qualitative assessment of electronic monitoring. US Department of Justice, National Institute of Justice, Washington, DC
Ballinger GA (2004) Using generalized estimating equations for longitudinal data analysis. Organ Res Methods 7:127–150
Becker SO, Ichino A (2002) Estimation of average treatment effects based on propensity scores. Stata J 2:358–377
Bijleveld CCJH, Van der Kamp LJTh (1998) Longitudinal data analysis: designs, models and methods. Sage Publications, Thousand Oaks
Caliendo M, Kopeinig S (2008) Some practical guidance for the implementation of propensity score matching. J Econ Surv 22:31–72
Cullen FT, Pratt T, Graham A (2019) Why longitudinal research is hurting criminology. Criminologist 44:1–9
Curman AS, Andresen MA, Brantingham PJ (2015) Crime and place: a longitudinal examination of street segment patterns in Vancouver, BC. J Quant Criminol 31:127–147
D’Agostino RB (1998) Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 17:2265–2281
Diggle P, Kenward MG (1994) Informative drop-out in longitudinal data analysis. Appl Stat 39:49–93
Farrington DP (2003) Developmental and life-course criminology: key theoretical and empirical issues-the 2002 Sutherland Award address. Criminology 41:221–225
Farrington DP (2015) Prospective longitudinal research on the development of offending. Aust N Z J Criminol 48:314–335
Farrington DP (2017) A general age-graded theory of crime: Lessons learned and the future of life-course criminology. In: Farrington DP (ed) Integrated developmental and life-course theories of offending. Routledge, Abingdon, pp 175–192
Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds) (2008) Longitudinal data analysis. CRC Press, Abington
Fitzmaurice GM, Laird NM, Ware JH (2011) Applied longitudinal analysis. Wiley, Hoboken
Gainey RR, Payne BK, O’Toole M (2000) The relationships between time in jail, time on electronic monitoring, and recidivism: an event history analysis of a jail-based program. Justice Q 17:733–752
Gies SV, Gainey R, Cohen MI, Healy E, Yeide M, Bekelman A, Bobnis A (2013) Monitoring high-risk gang offenders with GPS technology: An evaluation of the California supervision program final report. US Department of Justice, National Institute of Justice, Washington, DC
Griswold ME, Localio AR, Mulrow C (2010) Propensity score adjustment with multilevel data: setting your sites on decreasing selection bias. Ann Intern Med 152:393–395
Guo S, Fraser MW (2014) Propensity score analysis, vol 12. Sage Publishing Inc, Thousand Oaks
Guo S, Barth RP, Gibbons C (2006) Propensity score matching strategies for evaluating substance abuse services for child welfare clients. Child Youth Serv Rev 28:357–383
Hannon L (2003) Poverty, delinquency, and educational attainment: cumulative disadvantage or disadvantage saturation? Sociol Inq 73:575–594
Hansen BB (2007) Flexible, optimal matching for observational studies. R News 7:18–24
Hernan MA, Robins JM (2010) Causal inference. CRC, Boca Raton
Hernán MÁ, Brumback B, Robins JM (2000) Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 11:561–570
Hill L, Scaggs SJ, Bales WD (2017) Assessing the statewide impact of the Specter Vocational Program on reentry outcomes: a propensity score matching analysis. J Offender Rehabil 56:61–86
Hirano K, Imbens GW (2004) The propensity score with continuous treatments. In: Gelman A, Meng X (eds) Applied Bayesian modeling and causal inference from incomplete-data perspectives. Wiley, Hobeken, NJ, pp 73–84
Imbens GW (2000) The role of the propensity score in estimating dose-response functions. Biometrika 87:706–710
Jackson F (1977) A causal theory of counterfactuals. Aust J Philos 55:3–21
Jennings WG, Richards TN, Smith MD, Bjerregaard B, Fogel SJ (2014) A critical examination of the “White victim effect” and death penalty decision-making from a propensity score matching approach: the North Carolina experience. J Crim Justice 42:384–398
Joffe MM, Rosenbaum PR (1999) Invited commentary: propensity scores. Am J Epidemiol 150:327–333
Jolliffe D, Hedderman C (2015) Investigating the impact of custody on reoffending using propensity score matching. Crime Delinq 61:1051–1077
Kim RH, Clark D (2013) The effect of prison-based college education programs on recidivism: propensity score matching approach. J Crim Justice 41:196–204
Kim YS, Lo CC (2016) Short-and mid-term effects of violent victimization on delinquency: a multilevel growth-curve modeling approach. J Interpers Violence 31:2643–2665
Kim J, Seltzer M (2007) Causal inference in multilevel settings in which selection processes vary across schools. CSE Technical Report 708. National Center for Research on Evaluation, Standards, and Student Testing (CRESST)
Latessa Edward J, Lugo Melissa, Pompoco Amanda, Sullivan Carrie, Wooldredge John (2015) Evaluation of Ohio’s prison programs. Center for Crime Justice Research, University of Cincinnati, Cincinnati, OH
Lewis D (1974) Causation. J Philos 70:556–567
Lewis D (1979) Counterfactual dependence and time’s arrow. Nous 13:455–476
Lewis PWA, McKenzie E (2017) Simulation methodology for statisticians, operations analysts, and engineers. CRC Press, Boca Raton, FL
Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22
Lilley DR, Stewart MC, Tucker-Gail K (2019) Drug courts and net-widening in US cities: a reanalysis using propensity score matching. Criminal Justice Policy Review. https://doi.org/10.1177/0887403419828045
Little TD, Card NA, Preacher KJ, McConnell E (2009) Modeling longitudinal data from research on adolescence. In: Lerner RM, Steinberg L (eds) Handbook of adolescent psychology, volume 1: Individual bases of adolescent development. Wiley, Hoboken NJ, pp 15–54
Loughran TA, Wilson T, Nagin DS, Piquero AR (2015) Evolutionary regression? Assessing the problem of hidden biases in criminal justice applications using propensity scores. J Exp Criminol 11:631–652
Lugo M, Wooldredge J, Pompoco A, Sullivan C, Latessa EJ (2017) Assessing the impact of unit management programs on institutional misconduct and prison “Returns”. justice quarterly, Online First 1–34
Lyons CJ, Roberts A (2014) The difference “hate” makes in clearing crime: an event history analysis of incident factors. J Contemp Crim Justice 30:268–289
McGloin JM, Pratt TC, Maahs J (2004) Rethinking the IQ-delinquency relationship: a longitudinal analysis of multiple theoretical models. Justice Q 21:603–635
Menard SW (2002) Longitudinal research, 2nd edn. Sage, Thousand Oaks
Moffitt TE (1993) Life-course-persistent and adolescence-limited antisocial behavior: a developmental taxonomy. Psychol Rev 100:674–701
Morgan SL, Harding DJ (2006) Matching estimators of causal effects: prospects and pitfalls in theory and practice. Sociol Methods Res 35:3–60
Morgan SL, Winship C (2015) Counterfactuals and causal inference: Methods and principles for social research, 2nd edn. Cambridge University Press, New York
Morris RG (2016) Exploring the effect of exposure to short-term solitary confinement among violent prison inmates. J Quant Criminol 32:1–22
Nagin DS, Odgers CL (2010) Group-based trajectory modeling (nearly) two decades later. J Quant Criminol 26:445–453
Ohio Department of Rehabilitation and Correction (2014) DRC policy: 57-EDU-01; DRC policy #1361: 02-REN-02; DRC policy #1361: 57-EDU-02; DRC policy #1361: 74-UMA-01; DRC policy #1361: 70-RCV-1. Columbus, OH
Pike A, Reiss D, Hetherington EM, Plomin R (1996) Using MZ differences in the search for nonshared environmental effects. J Child Psychol Psychiatry 37:695–704
Piza EL (2018) The crime prevention effect of CCTV in public places: a propensity score analysis. J Crime Justice 41:14–30
Pompoco A, Wooldredge J, Lugo M, Sullivan C, Latessa EJ (2017) Reducing misconduct and prison returns with facility education programs. Criminol Public Policy 16:515–547
Purcell SM, Wray NR, Stone JL, Visscher PM, O’donovan MC, Sullivan PF, O’Dushlaine CT (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752
Pyrooz DC, Gartner N, Smith M (2017) Consequences of incarceration for gang membership: a longitudinal study of serious offenders in Philadelphia and Phoenix. Criminology 55:273–306
Raudenbush SW, Bryk AS (2002) Hierarchical linear models: applications and data analysis methods, vol 1. Sage, Thousand Oaks
Reid JA, Piquero AR, Sullivan CJ (2015) Exploring the impact of alcohol and marijuana use on commercial sexual exploitation among male youth using parallel-process latent growth curve modeling. J Crime Justice 38:377–394
Robins J (1986) A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Math Model 7:1393–1512
Robins JM, Hernán MA (2009) Estimation of the causal effects of time-varying exposures. Longitudinal data analysis. In: Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds) Advances in longitudinal data analysis. Chapman and Hall/CRC Press, New York, pp 553–599
Robins JM, Hernan MA, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11:550–560
Roese NJ (1997) Counterfactual thinking. Psychol Bull 121:133–148
Rosenbaum PR (2002) Overt bias in observational studies. In: Rosenbaum PR (ed) Observational studies. Springer Publishers, New York, NY, pp 71–104.
Rosenbaum PR, Rubin DB (1983a) The central role of the propensity score in observational studies for causal effects. Biometrika 70:41–55
Rosenbaum PR, Rubin DB (1983b) Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J R Stat Soc Ser B (Methodol) 45:212–218
Rosenbaum PR, Rubin DB (1984) Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc 79:516–524
Rosenbaum PR, Rubin DB (1985a) Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat 39:33–38
Rosenbaum PR, Rubin DB (1985b) The bias due to incomplete matching. Biometrics 41:103–116
Rubin DB (1973a) Matching to remove bias in observational studies. Biometrics 29:159–183
Rubin DB (1973b) The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 29:185–203
Rubin DB (1976) Multivariate matching methods that are equal percent bias reducing, I: some examples. Biometrics 32:109–120
Rubin DB (1978) Using multivariate matched sampling and regression adjustment to control bias in observational studies. J Am Stat Assoc 74:318–328
Rutter M (1988) Longitudinal data in the study of causal processes: Some uses and some pitfalls. In: Rutter M (ed) Studies of psychosocial risk: the power of longitudinal data. Cambridge University Press, New York
Sampson RJ, Laub JH (1995) Crime in the making: pathways and turning points through life. Harvard University Press, Cambridge
Sampson RJ, Laub JH, Wimer C (2006) Does marriage reduce crime? A counterfactual approach to within-individual causal effects. Criminology 44:465–508
Saunders J, Hunt P, Hollywood JS (2016) Predictions put into practice: a quasi-experimental evaluation of Chicago’s predictive policing pilot. J Exp Criminol 12:347–371
Sewell DK, Chen Y, Bernhard W, Sulkin T (2016) Model-based longitudinal clustering with varying cluster assignments. Stat Sin 26:205–233
Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Wadsworth Cengage, Belmont
Silver IA, Nedelec JL (2018) Cognitive abilities and antisocial behavior in prison: A longitudinal assessment using a large state-wide sample of prisoners. Intelligence 71:17–31.
Singer JD, Willett JB (2003) Applied longitudinal data analysis. Oxford University Press, Oxford
Smith JA, Todd PE (2005) Does matching overcome LaLonde’s critique of nonexperimental estimators? J Econom 125:305–353
Spirtes P, Glymour CN, Scheines R (2000) Causation, prediction, and search. MIT Press, Cambridge
Sullivan CJ, Piquero AR (2010) Investigating stability and change in substance use and criminal activity using a synthesized longitudinal modeling approach. J Drug Issues 40:63–91
Sutherland A (2019) A propensity score analysis of a community resettlement programme for women prisoners. Criminol Crim Justice 19:115–132
Thoemmes FJ, West SG (2011) The use of propensity scores for nonrandomized designs with clustered data. Multivar Behav Res 46:514–543
Thornberry TP (1987) Toward an interactional theory of delinquency. Criminology 25:863–891
Verbruggen J (2015) Effects of unemployment, conviction and incarceration on employment: a longitudinal study on the employment prospects of disadvantaged youths. Br J Criminol 56(4):729–749
Visher CA, Lattimore PK, Barrick K, Tueller S (2017) Evaluating the long-term effects of prisoner reentry services on recidivism: what types of services matter? Justice Q 34:136–165
Vito GF, Higgins GE, Tewksbury R (2017) The effectiveness of parole supervision: use of propensity score matching to analyze reincarceration rates in Kentucky. Criminal Justice Policy Rev 28:627–640
Wiley SA, Esbensen FA (2016) The effect of police contact: does official intervention result in deviance amplification? Crime Delinq 62(3):283–307
Wong JS, Schonlau M (2013) Does bully victimization predict future delinquency? A propensity score matching approach. Crim Justice Behav 40(11):1184–1208
Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42:121–130
Zhang G (2019) The effects of a school policing program on crime, discipline, and disorder: a quasi-experimental evaluation. Am J Crim Justice 44:45–62