Long-time stability of large-amplitude noncharacteristic boundary layers for hyperbolic–parabolic systems

Journal de Mathématiques Pures et Appliquées - Tập 92 - Trang 547-598 - 2009
Toan Nguyen1, Kevin Zumbrun1
1Department of Mathematics, Indiana University, Bloomington, IN 47402, United States

Tài liệu tham khảo

Alexander, 1990, A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math., 410, 167 Barker, 2008, Stability of viscous shocks in isentropic gas dynamics, Comm. Math. Phys., 281, 231, 10.1007/s00220-008-0487-4 A.L. Braslow, A history of suction-type laminar-flow control with emphasis on flight research, in: NSA History Division, Monographs in Aerospace History, No. 13, 1999 Bridges, 2002, Stability and instability of solitary waves of the fifth-order KdV equation: A numerical framework, Phys. D, 172, 190, 10.1016/S0167-2789(02)00655-3 L.Q. Brin, Numerical testing of the stability of viscous shock waves, PhD thesis, Indiana University, Bloomington, 1998 Brin, 2001, Numerical testing of the stability of viscous shock waves, Math. Comp., 70, 1071, 10.1090/S0025-5718-00-01237-0 Brin, 2002, Analytically varying eigenvectors and the stability of viscous shock waves, Mat. Contemp., 22, 19 Costanzino, 2009, Spectral stability of noncharacteristic boundary layers of isentropic Navier–Stokes equations, Arch. Ration. Mech. Anal., 192, 537, 10.1007/s00205-008-0153-1 Freistühler, 2002, Spectral stability of small shock waves, Arch. Ration. Mech. Anal., 164, 287, 10.1007/s00205-002-0215-8 Gardner, 1991, A stability index for steady state solutions of boundary value problems for parabolic systems, J. Differential Equations, 91, 181, 10.1016/0022-0396(91)90138-Y Gardner, 1989, Traveling waves of a perturbed diffusion equation arising in a phase field model, Indiana Univ. Math. J., 38, 1197, 10.1512/iumj.1990.39.39054 Gardner, 1998, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51, 797, 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1 Grenier, 2001, Stability of one dimensional boundary layers by using Green's functions, Comm. Pure Appl. Math., 54, 1343, 10.1002/cpa.10006 O. Guès, G. Métivier, M. Williams, K. Zumbrun, Existence and stability of noncharacteristic hyperbolic–parabolic boundary-layers, Arch. Ration. Mech. Anal., in press Guès, 2008, Viscous boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations, 244, 309, 10.1016/j.jde.2007.10.026 Henry, 1981, Geometric Theory of Semilinear Parabolic Equations, 10.1007/BFb0089647 Howard, 2006, Pointwise asymptotic behavior of perturbed viscous shock profiles, Adv. Differential Equations, 11, 1031, 10.57262/ade/1355867611 Howard, 2006, Stability of undercompressive viscous shock waves, J. Differential Equations, 225, 308, 10.1016/j.jde.2005.09.001 J. Humpherys, O. Lafitte, K. Zumbrun, Stability of viscous shock profiles in the high Mach number limit, Comm. Math. Phys., in press J. Humpherys, G. Lyng, K. Zumbrun, Spectral stability of ideal-gas shock layers, Arch. Ration. Mech. Anal., in press J. Humpherys, G. Lyng, K. Zumbrun, Multidimensional spectral stability of large-amplitude Navier–Stokes shocks, in preparation Humpherys, 2006, An efficient shooting algorithm for evans function calculations in large systems, Phys. D, 220, 116, 10.1016/j.physd.2006.07.003 Kapitula, 1998, Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations, Phys. D, 124, 58, 10.1016/S0167-2789(98)00172-9 Kato, 1995, Perturbation Theory for Linear Operators, 10.1007/978-3-642-66282-9 Kawashima, 2003, Asymptotic stability of the stationary solution to the compressible Navier–Stokes equations in the half space, Comm. Math. Phys., 240, 483, 10.1007/s00220-003-0909-2 Kawashima, 1985, Systems of equations of hyperbolic–parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14, 249, 10.14492/hokmj/1381757663 Mascia, 2003, Pointwise Green's function bounds for shock profiles of systems with real viscosity, Arch. Ration. Mech. Anal., 169, 177, 10.1007/s00205-003-0258-5 Mascia, 2004, Stability of large-amplitude viscous shock profiles of hyperbolic–parabolic systems, Arch. Ration. Mech. Anal., 172, 93, 10.1007/s00205-003-0293-2 Matsumura, 2001, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas, Comm. Math. Phys., 222, 449, 10.1007/s002200100517 Métivier, 2005, Viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc., 826 Pego, 1984, Stable viscosities and shock profiles for systems of conservation laws, Trans. Amer. Math. Soc., 282, 749, 10.1090/S0002-9947-1984-0732117-1 Plaza, 2004, An Evans function approach to spectral stability of small-amplitude shock profiles, Discrete Contin. Dyn. Syst., 10, 885, 10.3934/dcds.2004.10.885 Raoofi, 2009, Stability of undercompressive viscous shock profiles of hyperbolic–parabolic systems, J. Differential Equations, 246, 1539, 10.1016/j.jde.2008.10.006 Rousset, 2001, Inviscid boundary conditions and stability of viscous boundary layers, Asymptot. Anal., 26, 285 Rousset, 2003, Stability of small amplitude boundary layers for mixed hyperbolic–parabolic systems, Trans. Amer. Math. Soc., 355, 2991, 10.1090/S0002-9947-03-03279-3 Schlichting, 1960, Boundary Layer Theory Serre, 2001, Boundary layer stability in real vanishing-viscosity limit, Comm. Math. Phys., 221, 267, 10.1007/s002200100486 Yarahmadian, 2009, Pointwise Green function bounds and long-time stability of large-amplitude noncharacteristic boundary layers, SIAM J. Math. Anal., 40, 2328, 10.1137/080714804 Zumbrun, 2001, Multidimensional stability of planar viscous shock waves, vol. 47, 307 Zumbrun, 2004, Stability of large-amplitude shock waves of compressible Navier–Stokes equations, 311 Zumbrun, 2007, Planar stability criteria for viscous shock waves of systems with real viscosity, vol. 1911, 229 K. Zumbrun, Stability of noncharacteristic boundary layers in the standing shock limit, Trans. Amer. Math. Soc. (2008), in press Zumbrun, 1998, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47, 741, 10.1512/iumj.1998.47.1604