Bền vững lâu dài của tài nguyên nước ngầm ở đồng bằng Ganga Trung tâm, Ấn Độ: Nghiên cứu từ lưu vực sông Gomti

Springer Science and Business Media LLC - Tập 23 - Trang 16015-16037 - 2021
Urvashi Sharma1, Adeeba Khan2, Venkatesh Dutta1,2
1Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
2DST Centre for Policy Research, Babasaheb Bhimrao Ambedkar University, Lucknow, India

Tóm tắt

Nước ngầm là nguồn nước chính cho việc cung cấp nước uống và tưới tiêu cho gần 500 triệu cư dân ở cả vùng nông thôn và đô thị của đồng bằng Ganga (GAP) tại Ấn Độ. Việc khai thác nước ngầm một cách bừa bãi, chủ yếu từ các phần nông của hệ thống tầng chứa nước phù sa, đang dẫn đến sự suy giảm nhanh chóng của mực nước ngầm. Dự kiến, trong những năm tới, áp lực lên nguồn nước ngầm sẽ chỉ tăng lên do quá trình đô thị hóa không ngừng gia tăng, cùng với những nhu cầu bổ sung về nước và đất, cũng như bởi những hiện tượng khí hậu bất thường và sự thay đổi trong khả năng cung cấp nước trong các mùa mà nhu cầu tưới tiêu và nhu cầu sinh thái cao. Trong nghiên cứu hiện tại, phương pháp nội suy Inverse Distance Weighted (IDW) được áp dụng sử dụng mức nước ngầm trước và sau mùa mưa từ 764 giếng quan trắc và peizometer để đánh giá xu hướng suy giảm nước ngầm trong lưu vực sông Gomti (GRB) từ 2005 đến 2015. Các bản đồ vùng tiềm năng nước ngầm đã được lập ra dựa trên dữ liệu độ sâu nước và hình ảnh vệ tinh Cartosat-1, xác định khu vực có mực nước ngầm đang tăng và giảm. Sự mất mát nước ngầm nông rõ ràng đã diễn ra trong giai đoạn 2005-2015. Sự suy giảm này được cho là do việc tưới tiêu mãnh liệt từ nguồn nước ngầm cũng như sự phát triển peri-đô thị quanh thủ phủ của bang. Nghiên cứu này có thể thông báo cho các nhà quy hoạch và quản lý địa phương về tác động của tưới tiêu và đô thị hóa lên chế độ nước ngầm ở những vùng đang phát triển nhanh trong lưu vực.

Từ khóa

#nước ngầm #tưới tiêu #đô thị hóa #tầng chứa nước phù sa #lưu vực sông Gomti #phát triển bền vững

Tài liệu tham khảo

Abeysingha, N. S., Singh, M., Sehgal, V. K., Khanna, M., Pathak, H., Jayakody, P., & Srinivasan, R. (2015). Assessment of water yield and evapotranspiration over 1985 to 2010 in the Gomti River basin in India using the SWAT model. Current Science, 12, 2202–2212. Ahmadi, S. H., & Sedghamiz, A. (2007). Geostatistical analysis of spatial and temporal variations of groundwater level. Environmental Monitoring and Assessment, 129(1–3), 277–294. Anand, J., Gosain, A. K., Khosa, R., & Srinivasan, R. (2018). Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. Journal of Hydrology: Regional Studies, 16, 32–53. Anjusha, K. V., James, A. M., Thankachan, F. A., Benny, J., & Hezakiel, V. B. (2020). Assessment of Water Pollution Using GIS: A Case Study in Periyar River at Eloor Region. Green Buildings and Sustainable Engineering (pp. 413–420). Springer. Bonsor, H. C., MacDonald, A. M., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., Dixit, A., Foster, S. S., Gopal, K., Lapworth, D. J., & Moench, M. (2017). Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer South Asia. Hydrogeology Journal, 25(5), 1377–1406. Buyan, M., & Cay, T. (2013). Spatial analyses of groundwater level differences using geostatistical modeling. Environmental and Ecological Statistics, 20(4), 633–646. Charoenpong, S., Suwanprasit, D. & Thongchumnum, P. (2012). Impacts of interpolation techniques on groundwater potential modeling using GIS in Phuket Province, Thailand. In Proceeding the 33rd Asian Conference of Remote Sensing, pp. 1–7. Dashtpagerdi, M. M., Vagharfard, H., & Honarbakhsh, A. (2013). Application of cross-validation technique for zoning of groundwater levels in Shahrekord plain. Agricultural Sciences, 2(7), 329–333. Dinesan, V. P., Gopinath, G., & Ashitha, M. K. (2015). Application of geoinformatics for the delineation of groundwater prospects zones-a case study for Melattur Grama Panchayat in Kerala, India. Aquatic Procedia, 4, 1389–1396. Dinka, M. O., Loiskandl, W., & Ndambuki, J. M. (2013). Seasonal behaviour and spatial actuations of groundwater levels in long-term irrigated agriculture: the case of a sugar estate. Pol Journal of Environment Studies, 22(5), 1325–1334. Dutta, V. (2012). Land use dynamics and peri-urban growth characteristics: Reflections on master plan and urban suitability from a sprawling north Indian city. Environment and Urbanization Asia, 3(2), 277–301. Dutta, V., Dubey, D., & Kumar, S. (2020). Cleaning the River Ganga: Impact of lockdown on water quality and future implications on river rejuvenation strategies. Science of the Total Environment, 743, 140756. Dutta, V., Kumar, R., & Sharma, U. (2015). Assessment of human-induced impacts on hydrological regime of Gomti river basin, India. Management of Environmental Quality: An International Journal, 26(5), 631–649. Dutta, V., Singh, A., & Prasad, N. (2010). Urban sprawl and water stress with respect to changing landscape: Study from Lucknow, India. Journal of Geography and Regional Planning, 2(5), 84–105. Dutta, V., Srivastava, R. K., Yunus, M., Pathak, S. A., Rai, A., & Prasad, N. (2011). Restoration plan of Gomti River with designated best use classification of surface water quality based on river expedition, monitoring and quality assessment. Earth Science India, 4(3), 80–104. Gandhi, V.P., & Bhamoriya, V. (2011). Groundwater Irrigation in India: Growth, Challenges, and Risks. In India Infrastructure Report, 2011, Water: Policy and Performance for Sustainable Development. Infrastructure Development Finance Company. Oxford University Press, New Delhi. Ganesh, V. N., Pricilla, D., Rajkumar, R., & Vishnuvardhan, K. (2020). Spatial assessment of ground water quality for Neelambur using GIS and AHP Techniques. Journal of Critical Reviews, 7(4), 1387–1395. Joseph, N., Preetha, P. P., & Narasimhan, B. (2021). Assessment of environmental flow requirements using a coupled surface water-groundwater model and a flow health tool: A case study of Son river in the Ganga basin. Ecological Indicators, 121, 107110. Losser, T., Li, L., & Piltner, R.A. (2014). Spatiotemporal interpolation method using radial basis functions for geospatiotemporal big data. In: IEEE fifth international conference on computing for geospatial research and application (COM. Geo). 17–24 Maheswaran, R., Khosa, R., Gosain, A. K., Lahari, S., Sinha, S. K., Chahar, B. R., & Dhanya, C. T. (2016). Regional scale groundwater modelling study for Ganga River basin. Journal of Hydrology, 541, 727–741. Misra, A. K. (2011). Impact of urbanization on the hydrology of Ganga Basin (India). Water Resources Management, 25(2), 705–719. MoWR-RDGR (2014). Annual Report 2013–14, Ministry of Water Resources, River Development and Ganga Rejuvenation, available at http://wrmin.nic.in/writereaddata/AR_2013-14.pdf. Mukherjee, A. (2018). Need for a Legal Framework for Groundwater Security in India. Groundwater of South Asia (pp. 687–694). Springer. Mukherjee, A., & Bhanja, S. N. (2019). An Untold Story of Groundwater Replenishment in India: Impact of Long-Term Policy Interventions. Water Governance: Challenges and Prospects (pp. 205–218). Springer. Mukherjee, A., Bhanja, S. N., & Wada, Y. (2018). Groundwater depletion causing reduction of baseflow triggering Ganges river summer drying. Scientific reports, 8(1), 1–9. Nayak, T. R., Gupta, S. K., & Galkate, R. (2015). GIS based mapping of groundwater fluctuations in Bina basin. Aquatic Procedia, 4, 1469–1476. Nistor, M. M., Rahardjo, H., Satyanaga, A., Hao, K. Z., Xiaosheng, Q., & Sham, A. W. L. (2020). Investigation of groundwater table distribution using borehole piezometer data interpolation: Case study of Singapore. Engineering Geology, 271, 105590. Rabah, F. K. J., Ghabayen, S. M., & Salha, A. A. (2011). Effect of GIS interpolation techniques on the accuracy of the spatial representation of groundwater monitoring data in Gaza strip. J Environ Sci Technol., 4(6), 579–589. Rajagopalan, B., & Lall, U. (1998). Locally weighted polynomial estimation of spatial precipitation. Journal of Geographic Information and Decision Analysis, 2(2), 44–51. Saha, D., Marwaha, S., & Mukherjee, A. (2018). Groundwater Resources and Sustainable Management Issues in India. Clean and Sustainable Groundwater in India (pp. 1–11). Springer. Saha, D., & Ray, R. K. (2019). Groundwater resources of India: Potential, challenges and management. Groundwater Development and Management (pp. 19–42). Springer. Shah, T., Molden, D., Sakthivadivel, R., & Seckler, D. (2000). Groundwater: overview of opportunities and challenges. IWMI. Shah, T., Roy, A. D., Qureshi, A. S., & Wang, J. (2003). Sustaining Asia’s groundwater boom: an overview of issues and evidence. Natural Resources Forum, 27(2), 130–141. Sharma, U., & Dutta, V. (2020). Impact of declining groundwater levels on river flows in the Ganga Alluvial plain-a case study of Gomti River India. Indian Journal of Ecology, 47(1), 40–48. Sharma, U., & Dutta, V. (2020). Establishing environmental flows for intermittent tropical rivers: Why hydrological methods are not adequate? International Journal of Environmental Science and Technology, 17, 2949–2966. Shyamala, G., Kumar, A.B., Manvitha, S., & Raj, V.T. (2020) Assessment of Spatial Interpolation Techniques on Groundwater Contamination. In: Satapathy S., Raju K., Molugaram K., Krishnaiah A., Tsihrintzis G. (eds.) International Conference on Emerging Trends in Engineering (ICETE). Learning and Analytics in Intelligent Systems, (vol 2). Springer: Cham https://doi.org/10.1007/978-3-030-24314-2_33 Singh, A. K. (2003). Interlinking of Rivers in India: A Preliminary Assessment. The Other Media. Singh, A., & Raju, A. (2020). Application of Grace Satellite Data for Assessment of Groundwater Resources in Central Ganga Alluvial Plain, Northern India. Environmental Concerns and Sustainable Development (pp. 153–162). Springer. Singh, M., Kumar, S., Kumar, B., Singh, S., & Singh, I. B. (2013). Investigation on the hydrodynamics of Ganga Alluvial Plain using environmental isotopes: a case study of the Gomati River Basin, northern India. Hydrogeology Journal. https://doi.org/10.1007/s10040-013-0958-3 Singh, P. K., & Singh, U. C. (2009). Water resource evaluation and management for Morar River basin, Gwalior District, Madhya Pradesh using GIS. Journal Earth Science India, 3, 174–186. Smedema, L. K., & Shiati, K. (2002). Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone. Irrigation and Drainage Systems, 16(2), 161. Sobti, R. C., & Dutta, V. (2018). STI for inclusive Growth in India: Building Strategic Perspective from Evidences. Policy Report. State Water Resources Agency (2019) Development of River Basin Assessment and Plans for all Major River Basins in Uttar Pradesh, Gomti Basin Plan, State Water Resources Agency, Govt. of Uttar Pradesh. Surinaidu, L., Muthuwatta, L., Amarasinghe, U. A., Jain, S. K., Ghosh, N. C., Kumar, S., & Singh, S. (2016). Reviving the Ganges Water Machine: Accelerating surface water and groundwater interactions in the Ramganga sub-basin. Journal of Hydrology, 540, 207–219. Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36(18), 1–5. Verma, P., Singh, P., & Srivastava, S. K. (2019). Impact of land use change dynamics on sustainability of groundwater resources using earth observation data (pp. 1–14). Environment. World Bank (2010). Deep Wells and Prudence: Towards Pragmatic Action for Addressing Groundwater Overexploitation in India., The International Bank for Reconstruction and Development/The World, Washington, D.C. USA. Xiao, Y., Gu, X., Yin, S., Shao, J., Cui, Y., Zhang, Q., & Niu, Y. (2016). Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. Springerplus, 5, 425. https://doi.org/10.1186/s40064-016-2073-0 Xie, Y., Chen, T., Lei, M., Yang, J., Guo, Q., Song, B., & Zhou, X. (2011). Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Chemosphere, 82(3), 468–476. Yang, W., Zhao, Y., Wang, D., Wu, H., Lin, A., & He, L. (2020). Using Principal Components Analysis and IDW Interpolation to Determine Spatial and Temporal Changes of Surface Water Quality of Xin’anjiang River in Huangshan, China. International Journal of Environmental Research and Public Health, 17(8), 2942. Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River Taiwan. Sustainable Environment Research, 26(1), 33–43. Zolekar, R. B., Todmal, R. S., Bhagat, V. S., Bhailume, S. A., Korade, M. S., & Das, S. (2020). Hydro-chemical characterization and geospatial analysis of groundwater for drinking and agricultural usage in Nashik district in Maharashtra. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00782-2