Long-term load forecasting: models based on MARS, ANN and LR methods
Tóm tắt
Từ khóa
Tài liệu tham khảo
Azad HB, Mekhilef S, Ganapathy VG (2014) Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Trans Sustain Energy 5(2):546–553
Barrow DK, Crone SF (2016a) A comparison of AdaBoost algorithms for time series forecast combination. Int J Forecast 32(4):1103–1119
Barrow DK, Crone SF (2016b) Cross-validation aggregation for combining autoregressive neural network forecast Devon. Int J Forecast 32(4):1120–1137
Bezerra B, Veiga Á, Barroso LA, Pereira M (2017) Stochastic long-term hydrothermal scheduling with parameter uncertainty in autoregressive streamflow models. IEEE Trans Power Syst 32(2):999–1006
Black JD, Henson WLW (2014) Hierarchical load hindcasting using reanalysis weather. IEEE Trans Smart Grid 5(1):447–455
Cevik A, Weber GW, Eyüboglu BM, Karli-Oguz K, The Alzheimer’s Disease Neuroimaging Initiative (2017) Voxel-MARS: a method for early detection of Alzheimer’s disease by classification of structural brain MRI. Ann Oper Res (ANOR) Spec Issue Oper Res Neurosci 258(1):31–57
Chow JH, Wu FI, Momoh JA (2005) Applied mathematics for restructured electric power systems. Appl Math Restruct Electric Power Syst 1(1):269–317
De Giorgi MG, Congedo PM, Malvoni M (2014) Photovoltaic power forecasting using statistical methods: impact of weather data. IET Sci Meas Technol 8(3):90–97
GENI, Global energy network institute. http://www.globalenergy/national_energy_grid/turkey/turkishnationalelectricitygrid.html
Goude Y, Nedellec R, Kong N (2014) Local short and middle term electricity load forecasting with semi-parametric additive models. IEEE Trans Smart Grid 5(1):440–446
Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning data mining, inference, and prediction. Math Intell 2(1):251–264
Hippert HS, Pedreira CE, Souza RC (2001) Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans Power Syst 16(1):44–55
Hong T, Fan S (2016) Probabilistic electric load forecasting: a tutorial review. Int J Forecast 32(3):914–935
Hong T, Wilson J, Xie J (2014) Long term probabilistic load forecasting and normalization with hourly information. IEEE Trans Smart Grid 5(1):456–462
Kandil MS, El-Debeiky SM, Hasanien NE (2002) Long-term load forecasting for fast developing utility using a knowledge-based expert system. IEEE Trans Power Syst 17(2):491–496
Khuntia SR, Rueda JL, van der Meijden MAMM (2016) Forecasting the load of electrical power systems in mid- and long-term horizons: a review. IET Gener Transm Distrib 10(16):3971–3977
Kuter S, Weber GW, Özmen A, Akyurek Z (2014) Modern applied mathematics for alternative modeling of the atmospheric effects on satellite images. In: Modeling, dynamics, optimization, and bioeconomics I: contributions from ICMOD 2010 and the 5th bioeconomy conference 2012. Springer International Publishing 73(1): 469–485
Kuter S, Akyurek Z, Weber GW (2018) Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines. Remote Sens Environ 205(1):236–252
Lee KY, Cha YT, Park JH (1992) Short-term load forecasting using an artificial neural network. IEEE Trans Power Syst 7(1):124–132
Liu B, Nowotarski J, Hong T, Weron R (2017) Probabilistic load forecasting via quantile regression averaging on sister forecasts. IEEE Trans Smart Grid 8(2):730–737
Montgomery DC, Peck EA, Vining GG (2015) Introduction to linear regression analysis. Wiley series in probability and statistics
Özmen A (2016) Robust optimization of spline models and complex regulatory networks: theory, methods and applications contributions to management science. Springer, Berlin
Özmen A, Weber GW (2014) RMARS: robustification of multivariate adaptive regression spline under polyhedral uncertainty. J Comput Appl Math 259(B):914–924
Özmen A, Weber GW, Batmaz I, Kropat E (2011) RCMARS: robustification of CMARS with different scenarios under polyhedral uncertainty set. Commun Nonlinear Sci Numer Simul (CNSNS) 16(12):4780–4787
Papalexopoulos AD, Hesterberg TC (1990) A regression-based approach to short-term system load forecasting. IEEE Trans Power Syst 5(4):1535–1547
Ravadanegh NS, Jahanyari N, Amini A, Taghizadeghan N (2016) Smart distribution grid multi-stage expansion planning under load forecasting uncertainty. IET Gener Transm Distrib 10(5):1136–1144
Rosenblatt F (1962) Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Spartan Books 7(3):1–219
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(1):533–536
Saez-Gallego J, Morales JM (2017) Short-term forecasting of price-responsive loads using inverse optimization. IEEE Trans Smart Grid PP(99):1
Seber GAF, Lee AJ (2012) Linear regression analysis. Wiley Ser Probab Stat 1(1):1–565
Soliman SA, Al-Kandari AM (2010) Electric load modeling for long-term forecasting chapter. Electr Load Forecast 1(1):353–406
Song KB, Baek YS, Hong DH, Jang G (2005) Short-term load forecasting for the holidays using fuzzy linear regression method. IEEE Trans Power Syst 20(1):96–101
Tsoi AC (1989) Multilayer perceptron trained using radial basis functions. Electron Lett 25(19):1296–1297
Vapnik VN (1998) Statistical learning theory. Wiley, New York
Wang L, Zhang Z, Chen J (2017) Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans Power Syst 32(4):2673–2681
Weber GW, Batmaz I, Köksal G, Taylan P, Yerlikaya Özkurt F (2012) CMARS: a new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization. Inverse Probl Sci Eng (IPSE) 20(3):371–400
Werntges H (1990) Delta rule-based neural networks for inverse kinematics: error gradient reconstruction replaces the Teacher. IJCNN Int Joint Conf Neural Netw 3(1):415–420
Weron R (2014) Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int J Forecast 30(4):1030–1081
Xiao L, Shao W, Liang T, Wang C (2016) A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting. Appl Energy 167(1):135–153
Xie J, Hong T (2017) Variable selection methods for probabilistic load forecasting: empirical evidence from the seven states of the United States. IEEE Trans Smart Grid PP(99):1
Xie J, Hong T, Stroud J (2015) Long-term retail energy forecasting with consideration of residential customer attrition. IEEE Trans Smart Grid 6(5):2245–2252