Long-term forecasting in a coastal ecosystem: case study of a Southern restored Mediterranean lagoon: The North Lagoon of Tunis

Nadia Ben Hadid1, Catherine Goyet2, Naceur Ben Maïz3, Abdessalem Shili1
1Département Génie Halieutique et Environnement, UR03AGRO1, Unité de Recherche Ecosystèmes et Ressources Aquatiques, Université de Carthage, Institut National Agronomique de Tunisie, 43 Avenue Charles Nicolle, 1082, Tunis, Tunisia
2ESPACE-DEV, Univ Montpellier, IRD, Univ Antilles, Univ Guyane, Univ Réunion, Montpellier France Laboratoire IMAGES-ESPACE-DEV, Univ. Perpignan Via Domitia, Perpignan, France
3Société Al Buhaira de développement et d'investissement, Rue de Rodrigo de Freitas, 1053, Les Berges du Lac, Tunis, Tunisia

Tóm tắt

AbstractEutrophication episodes are common in freshwater and coastal environments, causing significant damage to drinking water and aquaculture. Predictive models are efficient approaches for anticipating eutrophication or algal blooms because ecologists and environmentalists can estimate water pollution levels and take appropriate precautionary steps ahead of time. In aquatic ecosystems, chlorophyll-a (Chl-a) can be employed as a water quality indicator, revealing information on man-made physical, chemical, and biological changes variations or seasonal interventions. In the present study, a Seasonal AutoRegressive Integrated Moving Average (SARIMA) model was developed to forecast monthly Chl-a concentrations in the North Lagoon of Tunis, a Ramsar site, and one of the most important lagoons in Tunisia, using approximately three decades of historical data, starting from January 1989 to April 2018. SARIMA (2,0,2)(2,0,2)12 was found to be the best-fitting model for Chl-a forecasting in the North Lagoon of Tunis. The resulting SARIMA model was validated with actual monthly Chl-a concentrations from our last observations. Furthermore, with only one input variable, the SARIMA model showed greater applicability as a eutrophication early warning system using actual past Chl-a data. Finally, the SARIMA model was utilized to anticipate Chl-a levels from May 2018 to December 2025 as an early warning system for ecosystem managers and decision-makers for next generations.

Từ khóa


Tài liệu tham khảo

Afli A, Ayari R, Brahim M (2008) Trophic organization of the macro-zoobenthic assemblages within coastal areas subjected to anthropogenic activities. J Mar Biol Assoc UK 88:663–674. https://doi.org/10.1017/S0025315408001318

Agrawal A (2011) A new approach to spatio temporal kriging and its application. Thesis master of science. Graduate School of the Ohio State University, p 112

Aho K, Derryberry D, Peterson T (2014) Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95(3):631–636. https://doi.org/10.1890/13-1452.1

Akaike H (1973) Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60(2):255–265

Albertson K, Aylen J (1996) Modelling the great lakes freeze: forecasting and seasonality in the market for ferrous scrap. Int J Forecast 12(3):345–359. 10.1016/0169–2070(96)00669–3

Allard R (1998) Use of time-series analysis in infectious disease surveillance. Bull World Health Organ 76(4):327–333

Armi Z, Turki S, Trabelsi E, Ben Maiz N (2008) Nutrient loading and occurrence of potentially harmful phytoplankton species in the North Lake of Tunis (Tunisia). Cah Biol Mar 49:311–321. https://doi.org/10.21411/CBM.A.12B953FC

Armstrong JS (1985) Long range forecasting: from crystal ball to computer. John Wiley, New York

Ben Charrada R (1992) Le lac de Tunis après les aménagements. Paramètres physicochimiques de l’eau et relation avec la croissance des macroalgues. Mar Life 1:29–44

Box GEP, Jenkins GM (1976) Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco, CA

Box GEP, Jenkins GM, Reinsel GC, Ljung GM (2008) Time Series Analysis: Forecasting and Control, 4th edn. John Wiley & Sons, Hoboken, NJ, USA

Chen Q, Guan T, Yun L, Li R, Recknagel F (2015) Online forecasting chlorophyll a concentrations by an auto-regressive integrated moving average model: Feasibilities and potentials. Harmful Algae 43:58–65 https://doi.org/10.1016/j.hal.2015.01.002

Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253. https://doi.org/10.3354/meps210223

Cui L, You L, Huang Z (2007) TN/TP ratio of lake water and its implication in algae bloom of Beijing’s urban lakes. Environ Sci Technol 30(10):47–49

Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Micro-cystis during cyanobacteria blooms. Harmful Algae 8:715–725. https://doi.org/10.1016/j.hal.2009.02.004

de Jonge VN, Elliott M, Orive E (2002) Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia 475(476):1–19. https://doi.org/10.1023/A:1020366418295

Derolez V, Soudant D, Malet N, Chiantella C, Richard M, Abadie E, Aliaume C, Bec B (2020) Two decades of oligotrophication: Evidence for a phytoplankton community shift in the coastal lagoon of Thau (Mediterranean Sea, France). Estuar Coast Shelf Sci 241:106810. https://doi.org/10.1016/j.ecss.2020.106810

Dindarloo S (2015) Reliability forecasting of a load-haul-dump machine: a comparative study of ARIMA and neural networks. Qual Reliab Eng Int 32(4):1545–1552. https://doi.org/10.1002/qre.1844

Dippner JW, Nguyen-Ngoc L, Doan-Nhu H, Subramaniam A (2011) A model for the prediction of harmful algae bloom in the Vietnamese upwelling area. Harmful Algae 10:606–611. https://doi.org/10.1016/j.hal.2011.04.012

Donner A (1982) The relative effectiveness of procedures commonly used in multiple regression analysis for dealing with missing values. Am Stat 36:378–381

Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41:578–588

García-Ayllón S (2017) Diagnosis of complex coastal ecological systems: Environmental GIS analysis of a highly stressed Mediterranean lagoon through spatiotemporal indicators. Ecol Indic 83:451–462 https://doi.org/10.1016/j.ecolind.2017.08.015

García-Pintado J, Martínez-Mena M, Barberá GG, Albaladejo J, Castillo VM (2007) Anthropogenic nutrient sources and loads from a Mediterranean catchment into a coastal lagoon: Mar Menor, Spain. Sci Total Environ 373:220–239. https://doi.org/10.1016/j.scitotenv.2006.10.046

Gaynor PE, Kirkpatrick RC (1994) Introduction to Time Series Modeling and Forecasting in Business and Economics. McGraw-Hill College

Harbridge W, Pilkey OH, Whaling P, Swetland P (1976) Sedimentation in the Lake of Tunis: a lagoon strongly influenced by man. Environ Geol 1:215–225. https://doi.org/10.1007/bf02407508

Hasting A (2001) Transient dynamics and persistence of ecological systems. Ecol Lett 4:215–220. https://doi.org/10.1046/j.1461-0248.2001.00220.x

Hassanzadeh S, Hosseinibalam F, Alizadeh R (2009) Statistical models and time series forecasting of sulfur dioxide: a case study Tehran. Environ Monit Assess 155(1):149–155. https://doi.org/10.1007/s10661-008-0424-1

Hecht-Nielsen R (1989) Theory of the backpropagation neural network. Int Jt Conf Neural Netw 1:593–605. https://doi.org/10.1109/IJCNN.1989.118638

Helfenstein U (1991) The use of transfer function models, intervention analysis and related time series methods in epidemiology. Int J Epidemiol 20(3):808–815. https://doi.org/10.1093/ije/20.3.808

Hintze J (2007) NCSS 2007. NCSS, LLC. Kaysville, Utah, USA. www.ncss.com. Accessed February/Mar 2021

Hood RR, Zhang X, Glibert PM, Roman MR, Stocker DK (2006) Modeling the influence of nutrients, turbulence and grazing on Pfiesteria population dynamics. Harmful Algae 5:459–479. https://doi.org/10.1016/j.hal.2006.04.014

Hyndman RJ, Athanasopoulos G (2013) Forecasting: Principles and Practice. O Texts Publishers: Monash University, Australia. https://www.otexts.org/book/fpp. Accessed February/Mar 2021

Leruste A, Malet N, Munaron D, Derolez V, Hatey E, Collos Y, De Wit R, Bec B (2016) First steps of ecological restoration in Mediterranean lagoons: Shifts in phytoplankton communities. Estuar Coast Shelf Sci 180:190–203. https://doi.org/10.1016/j.ecss.2016.06.029

Linthicum KJ, Anyamba A, Tucker CJ, Kelley PW, Myers MF, Peters CJ (1999) Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285(5426):397–400. https://doi.org/10.1126/science.285.5426.397

Lu Y, Abou Rizk SM (2008) Automated Box–Jenkins forecasting modelling. Autom Constr 18:547–558

Lui GCS, Li WK, Leung KMY, Lee JHW, Jayawardena AW (2007) Modelling algal blooms using vector autoregressive model with exogenous variables and long memory filter. Ecol Model 200:130–138. https://doi.org/10.1016/j.ecolmodel.2006.06.017

Makwinja R, Phiri T, Kosamu IB, Kaonga CC (2017) Application of stochastic models in predicting Lake Malawi water levels. Int J Water Resour Environ Eng 9(9):191–200. https://doi.org/10.5897/IJWREE2017.0740

Mdaini Z, El Gafsi M, Tremblay J, Pharand P, Gagné JP (2019) Spatio-temporal variability of biomarker responses and lipid composition of Marphysasanguinea, Montagu (1813) in the anthropic impacted lagoon of Tunis. Mar Pollut Bull 144:275–286. https://doi.org/10.1016/j.marpolbul.2019.04.065

Mishra AK, Desai VR (2005) Drought forecasting using stochastic models. Stoch Environ Res Risk A 19:326–339

Newton A, Icely J, Cristina S et al (2014) An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar Coast Shelf Sci 140:95–122. https://doi.org/10.1016/J.ECSS.2013.05.023

Nixon SW (1995) Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41(1):199–219. https://doi.org/10.1080/00785236.1995.10422044

Oh HM, Ahn CY, Lee JW, Chon TS, Choi KH, Park YS (2007) Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks. Ecol Model 203:109–118. https://doi.org/10.1016/j.ecolmodel.2006.04.030

Onderka M (2007) Correlations between several environmental factors affecting the bloom events of cyanobacteria in Liptovska Mara reservoir (Slovakia)-a simple regression model. Ecol Model 209:412–416. https://doi.org/10.1016/j.ecolmodel.2007.07.028

Omer FD (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng Appl Artif Intell 23:586–594

Ouchi A (1982) Forecast of a red tide occurrence in the northern part of Hiroshima Bay-II. Prediction of red tide occurrence by means of multiple linear regression model. Bull Jpn Soc Sci Fish 48:1245–1250

Paerl HW, Huisman J (2008) Blooms like it hot. Science 320(5872):57–58. https://doi.org/10.1126/science.1155398

Pai PF, Lin CS (2005) A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 33:497–505. https://doi.org/10.1016/j.omega.2004.07.024

Pajuelo JG, Lorenzo JM (1995) Analysis and forecasting of the demersal fishery of the Canary Islands using an ARIMA model. Sci Mar 59:155–164

Prista N, Diawara N, Costa MJ, Jones C (2011) Use of SARIMA models to assess data-poor fisheries: a case study with a sciaenid fishery of Portugal. Fish Bull 109(2):170–185

Raman RK, Mohanty SK, Bhatta KS, Karna SK, Sahoo AK, Mohanty BP, Das BK (2018) Time series forecasting model for fisheries in Chilika lagoon (a Ramsar site, 1981), Odisha, India: a case study. Wetl Ecol Manag 26:677–687. https://doi.org/10.1007/s11273-018-9600-4

Recknagel F, Ostrovsky I, Cao HQ, Zohary T, Zhang XQ (2013) Ecological relationships, thresholds and time-lags determining phytoplankton community dynamics of Lake Kinneret, Israel elucidated by evolutionary computation and wavelets. Ecol Model 255:70–86. https://doi.org/10.1016/j.ecolmodel.2013.02.006

Recknagel F, Orr P, Cao H (2014) Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation. Harmful Algae 31:26–34. https://doi.org/10.1016/j.hal.2013.09.004

Rezgui A, Maiz N, Moussa M (2008) Fonctionnement hydrodynamique et écologique du Lac Nord de Tunis par modélisation numérique. Rev Sci l’Eau 21:349–361. https://doi.org/10.7202/018781ar

Robledano F, Esteve MA, Martínez-Fernández J, Farinós P (2011) Determinants of wintering waterbird changes in a Mediterranean coastal lagoon affected by eutrophication. Ecol Indic 11:395–406. https://doi.org/10.1016/j.ecolind.2010.06.010

Romilly P (2005) Time series modelling of global mean temperature for managerial decision-making. J Environ Manag 76:61–70

Schramm W (1999) Factors influencing seaweed responses to eutrophication: some results from EU-project EUMAC. J Appl Phycol 11:69–78

Schwartz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

Shili A, Trabelsi EB, Ben Maiz N (2002) Seasonal dynamics of macroalgae in the South Lake of Tunis. J Coast Conserv 8:127–134

Souchu P, Bec B, Smith VH, Laugier T, Fiandrino A, Benau L, Orsoni V, Collos Y, Vaquer A (2010) Patterns in nutrient limitation and chlorophyll-a along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Can J Fish Aquat Sci 67:743–753. https://doi.org/10.1139/F10-018

Stergiou KI (1991) Describing and forecasting the sardine-anchovy complex in the eastern Mediterranean using vector autoregressions. Fish Res 11:127–141

Stergiou KI, Chritou ED, Petrakis G (1997) Modelling and forecasting monthly fisheries catches: comparison of regression, univariate and multivariate time series methods. Fish Res 29:55–95

Sun H, Koch M (2001) Case study: analysis and forecasting of salinity in Apalachicola Bay, Florida, using Box-Jenkins ARIMA models. J Hydraul Eng 127(9):718–727. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:9(718)

Tiao GC (2001) Time Series: ARIMA Methods. Comput Sci:363–407

Tizro AT, Ghashghaie M, Georgiou P, Voudouris K (2014) Time series analysis of water quality parameters. J Appl Res Water Wastewater 1(1):40–50

Trabelsi-Bahri EL, Armi Z, Trabelsi-Annabi N, Shili A, Ben Maiz N (2013) Water quality variables as indicators in the restoration impact assessment of the north lagoon of Tunis, South Mediterranean. J Sea Res 79:12–19. https://doi.org/10.1016/j.seares.2013.01.003

Turki S, Balti N, Ben Salah C (2007) First detection of K. foliaceum (Stein1883) in Tunisian waters. Harmful Algae News 35:9–10

Viaroli P, Bartoli M, Azzoni R, Giordani G, Mucchino M, Naldi M, Nizzoli D, Taje L (2005) Nutrient and iron limitation to Ulva blooms in a eutrophic coastal lagoon (Sacca di Goro, Italy). Hydrobiologia 550:57–71. https://doi.org/10.1007/s10750-005-4363-3

Viaroli P, Bartoli M, Giordani G, Naldi M (2008) Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquat Conserv Mar Freshwat Ecosyst 18:105–117. https://doi.org/10.1002/aqc

Villanoy CL, Azanza RV, Altemerano A, Casil AL (2005) Attempts to model the bloom of Pyrodinium, a tropical toxic dinoflagellate. Harmful Algae 5:156–183. https://doi.org/10.1016/j.hal.2005.07.001

Vogiatzakis IN, Mannion AM, Griffiths GH (2006) Mediterranean ecosystems: problems and tools for conservation. Prog Phys Geogr 30(2):175–200. https://doi.org/10.1191/0309133306pp472ra

Wang Z, Huang K, Zhou PJ, Guo HC (2010) A hybrid neural network model for cyanobacteria bloom in Dianchi Lake. Procedia Environ Sci 2:67–75

Wei WWS (1990) Time series analysis: univariate and multivariate methods, 2th edn. Addison-Wesley Publishing Company, New York

Wilhelm SW, Farnsley SE, LeCleir GR (2011) The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae 10:207–215. https://doi.org/10.1016/j.hal.2010.10.001

Yu L, Liang S, Chen R, Lei KK (2019) Predicting monthly biofuel production using a hybrid ensemble forecasting methodology. Int J Forecast. https://doi.org/10.1016/j.ijforecast.2019.08.014

Zaldívar JM, Cardoso AC, Viaroli P, de Wit R, Ibanez C, Reizopoulou S, Razinkovas A, Basset A, Holmer M, Murray N (2008a) Eutrophication in transitional waters: an overview. Transiti. Waters. Monogr 1:1–78. https://doi.org/10.1285/i18252273v2n1p1

Zaldívar JM, Strozzi F, Dueri S, Marinov D, Zbilut JP (2008b) Characterization of regime shifts in environmental time series with recurrence quantification analysis. Ecol Model 210:58–70. https://doi.org/10.1016/j.ecolmodel.2007.07.012

Zhang H, Hu W, Gu K, Li Q, Zheng D, Zhai S (2013) An improved ecological model and software for short-term algal bloom forecasting. Environ Model Softw 48:152–162. https://doi.org/10.1016/j.envsoft.2013.07.001