Long-term effects of food deprivation: I. Impact on pain reactivity and shock-induced hypoalgesia
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aml, H., Madden, J., Patrick, R. L., & Barchas, J. D. (1976). Stressinduced increase in endogenous opiate peptides: Concurrent analgesia and its partial reversal by naloxone. In H. Kosterlitz (Ed.), Opiates and endogenous opioid peptides (pp. 63–70). Amsterdam: Elsevier.
Amir, S., & Amit, Z. (1978). Endogenous opioid ligands may mediate stress-induced changes in the affective properties of pain related behavior in rats. Life Sciences, 23, 1143–1152.
Bechara, A., & van der Kooy, D. (1987). Kappa receptors mediate the peripheral aversive effects of opiates. Pharmacology, Biochemistry & behavior, 28, 227–233.
BILES, M. K. (1991). The role of the pituitary-adrenal axis in mild shockinduced hypoalgesia. Unpublished master*#x2019;s thesis, Texas A&M University.
BILES, M. K., ILLICH, P. A., & GRAU, J. W. (in press). Long-term effects of food deprivation: II. Impact on morphine reactivity. Psychobiology.
Bodnar, R. J., Kelly, D. D., Brutus, M., & Glusman, M. (1980). Stress-induced analgesia: Neural and hormonal determinants. Neuroscience & Biobehavioral Reviews, 4, 87–100.
Davis, H., D., & Hendersen, R. W. (1985). Effects of conditioned fear on responsiveness to pain: Long-term retention and reversibility by naloxone. Behavioral Neuroscience, 99, 277–289.
Drugan, R. C, Grau, J. W., Mater, S. F., Madden, J., & Barchas, J. D. (1981). Cross-tolerance between morphine and the long-term reaction to inescapable shock. Pharmacology, Biochemistry A behavior, 14, 677–682.
Fanselow, M. S. (1984). Shock-induced analgesia on the formalin test: Effects of shock severity, naloxone, hypophysectomy, and associative variables. Behavioral Neuroscience, 98, 79–95.
Frederickson, R. C. A., Burgis, V., & Edwards, J. D. (1977). Hyperalgesia induced by naloxone follows diurnal rhythm in responsivity to painful stimuli. Science, 198, 756–758.
Grau, J. W. (1984). The influence of naloxone on shock-induced freezing and analgesia. Behavioral Neuroscience, 98, 278–292.
Grau, J. W. (1987a). The central representation of an aversive event maintains the opioid and nonopioid forms of analgesia. Behavioral Neuroscience, 101, 272–288.
Grau, J. W. (1987b). The variables which control the activation of analgesic systems: Evidence for a memory hypothesis and against the coulometric hypothesis. Journal of Experimental Psychology: Animal Behavior Processes, 13, 215–255.
Grau, J. W., Hyson, R. L., Maier, S. F., Madden, J., & Barchas, J. D. (1981). Long-term stress-induced analgesia and activation of the opiate system. Science, 213, 1409–1411.
Grau, J. W., Illich, P. A., Chen, P.S., & Meagher, M. W. (1991). Role of cholinergic systems in pain modulation: I. Impact of scopolamine on environmentally induced hypoalgesia and pain reactivity. Behavioral Neuroscience, 105, 62–81.
Hamm, R. J., & Knisely, J. S. (1986). The analgesia produced by food deprivation in 4-month old, 14-month old, and 24-month old rats. Life Sciences, 39, 1509–1515.
Hamm, R. J., Knisely, J. S., Watson, A., Lyeth, B. G., & Bossut, D. F. B. (1985). Hormonal mediation of the analgesia produced by food deprivation. Physiology & behavior, 35, 879–882.
Hyson, R. L., Ashcraft, L. J., Drugan, R. C, Grau, J. W., & Maier, S. F. (1982). Extent and control of shock affects naltrexone sensitivity of stress-induced analgesia and reactivity to morphine. Pharmacology, Biochemistry & behavior, 17, 1019–1025.
Illich, P. A., & Grau, J. W. (1990). The impact of shock on reactivity to a tactile stimulus. Learning & Motivation, 21, 287–298.
ILLICH, P. A., & GRAU, J. W. (in press). Conditioned changes in pain reactivity: I. A discrete CS elicits hypoalgesia, not hyperalgesia, on the tail-flick test. Learning & Motivation.
Illich, P. A., Saunas, J. A., & Grau, J. W. (1991). Conditioned changes in pain reactivity: II. In search of the elusive phenomenon of conditioned hyperalgesia. Behavioral Neuroscience, 105, 478–481.
Jackson, R. L., Maier, S. F., & Coon, D. J. (1979). Long-term analgesic effects of inescapable shock and learned helplessness. Science, 206, 91–93.
Lewis, J. W., Cannon, J. T., & Liebeskind, J. C. (1980). Opioid and nonopioid mechanisms of stress analgesia. Science, 208, 623–625.
Lewis, J. W., Tordoff, M. G., Sherman, J. E., & Liebeskind, J. C. (1982). Adrenal medullary enkephalin-like peptides may mediate opioid stress analgesia. Science, 217, 557–559.
MacLennan, J. A., Drugan, R. C, Hyson, R. L., Maier, S. F., Madden, J., & Barchas, J. D. (1982). Corticosterone: A critical factor in an opioid form of stress-induced analgesia. Science, 215, 1530–1532.
Maier, S. F. (1986). Stressor controllability and stress-induced analgesia. In D. D. Kelly (Ed.), Stress-induced analgesia (Annals of the New York Academy of Sciences, Vol. 467, pp. 55–72). New York: New York Academy of Sciences.
Maier, S. F. (1989). Determinants of the nature of environmentally induced hypoalgesia. Behavioral Neuroscience, 103, 131–143.
Maier, S. F., Davies, S., Grau, J. W., Jackson, R. L., Morrison, D. H., Move, T., Madden, J., & Barchas, J. D. (1980). Opiate antagonists and long-term analgesic reaction induced by inescapable shock in rats. Journal of Comparative & Physiological Psychology, 9A, 1172–1183.
McGivern, R., Berka, C, Berntson, G. G., Walker, J. M., & Sandman, C. A. (1979). Effect of naloxone on analgesia induced by food deprivation. Life Sciences, 25, 885–888.
McGivern, R., & Berntson, G. G. (1980). Mediation by diurnal fluctuations in pain sensitivity in the rat by food intake patterns: Reversal by naloxone. Science, 210, 210–211.
Terman, G. W., Shavit, Y., Lewis, J. W., Cannon, J. T., & Liebeskind, J. C. (1984). Intrinsic mechanisms of pain inhibition: Activation by stress. Science, 226, 1270–1277.
van der Kooy, D. (1986). Hyperalgesic functions of peripheral opiate receptors. In D. D. Kelly (Ed.), Stress-induced analgesia (Annals of the New York Academy of Sciences, Vol. 467, pp. 154–168). New York: New York Academy of Sciences.
van der Kooy, D., & Nagy, J. I. (1985). Hyperalgesia mediated by peripherial opiate receports in the rat. Behavioral Brain Research, 17, 203–211.