Long‐term drivers of change in Polylepis woodland distribution in the central Andes

Journal of Vegetation Science - Tập 20 Số 6 - Trang 1041-1052 - 2009
William D. Gosling1,2, Jennifer A. Hanselman1,3,4, Christopher Knox1,4, Bryan G. Valencia1,4, Mark B. Bush1,4
1Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
2Department of Earth and Environmental Sciences, CEPSAR, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
3Department of Biology, Westfield State College, 577 Western Ave, Westfield, MA 01086, USA
4e-mail: [email protected]

Tóm tắt

Abstract

Question: Is the modern patchy distribution of highly biodiverse Polylepis woodlands a consequence of human activity or natural fluctuations in environmental conditions? What are the consequences of changing climate for the tree genus Polylepis?

Location: High central tropical Andes.

Methods: We characterized the ecological baseline conditions for Polylepis woodlands over the last ca. 370 000 years through: (i) examination of fossil pollen records (Salar de Uyuni and Lake Titicaca) and (ii) a review of autecological information concerning Polylepis.

Results: Fossil pollen data revealed fluctuations in the abundance (ca. 0‐34%) of Polylepis pollen before the arrival of humans in South America (>12 000 years ago), indicating that Polylepis did not form permanent continuous woodland before the arrival of humans and that climatic factors can drive rapid vegetation change. Autecological assessment of Polylepis revealed: (i) negative moisture balance, (ii) fire, (iii) waterlogging, and (iv) cloud cover to be critical in determining the niche space available for Polylepis.

Conclusions: Polylepis niche space in the central Andes was at a maximum during warm and wet conditions in the past, but might be at a minimum during the warmer and drier than modern conditions predicted for later this century. The sensitivity to past global climate change emphasizes the need for conservation planners to consider model predictions of a warmer central Andes in the coming decades when developing planting schemes. Natural fluctuations in woodland abundance suggest the most effective way for conservation efforts to “mimic” the natural baseline would be to develop a reproductively connected patchwork of communities.

Từ khóa


Tài liệu tham khảo

10.1038/35055524

Birks H.J.B., 1980, Quaternary palaeoecology

10.2307/3673852

10.1046/j.1466-822X.2002.00305.x

10.1111/j.1365-2699.2006.01645.x

10.1126/science.1090795

10.1016/j.biocon.2007.07.022

10.1016/j.yqres.2004.09.008

10.1016/j.foreco.2007.01.082

10.1111/j.1744-7429.2007.00361.x

Cohen M.E., 2005, Ecological suitability and tree seedling survival in the Bolivian altiplano, Ecologia Austral, 15, 207

10.1016/j.palaeo.2006.12.016

Diaz H.F., 1992, El Niño: historical and paleoclimatic aspects of the southern oscillation

Ellenberg H., 1958, Wald oder Steppe? Die natürliche Pflanzendecke der Anden Perus, Umschau, 1958, 645

10.1002/jcc.540100407

10.1016/S0378-1127(01)00535-7

Fjeldså J., 1996, Conserving the biological diversity of Polylepis woodlands of the highlands of Peru and Bolivia: a contribution to sustainable natural resource management in the Andes

10.1016/j.yqres.2003.08.007

Gentry A.H., 1993, A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador, Peru) with supplementary notes on herbaceous taxa

Godwin H., 1956, The history of the British flora: a factual basis for phytogeography

10.1016/j.actao.2007.03.002

10.1016/j.palaeo.2007.02.050

Hanselman J.A.2007.A 370 000‐year history of vegetation and climate change around Lake Titicaca (Bolivia/Peru). PhD thesis Florida Institute of Technology Melbourne FL US.

Hanselman J.A., A 370,000‐year record of vegetation and fire history around Lake Titicaca, Palaeogeography, Palaeoclimatology, Palaeoecology

10.1002/jqs.979

10.1007/s00468-007-0185-4

10.1111/j.1365-2435.2005.01040.x

Hooghiemstra H.1984.Vegetational and climatic history of the high plain of Bogota Colombia: a continuous record of the last 3.5 million years. Dissertationes Botanicae 79. Gantner Vaduz LI.

10.1016/j.tree.2006.06.004

10.1126/science.1141038

Judd W.S., 1999, Plant systematics: a phylogenetic approach

Juggins S.2005.C2 program version 1.5. Department of Geography University of Newcastle Newcastle upon Tyne UK. Available athttp://www.staff.ncl.ac.uk/staff/stephen.juggins/software/C2Home.htm/. Accessed 12 September 2009.

Kessler M., 2002, The “Polylepis problem”, Ecotropica, 8, 97

10.1016/j.ecolmodel.2007.05.001

10.1111/j.1365-2699.2007.01728.x

10.1046/j.1469-8137.1997.00861.x

10.1111/j.1523-1739.2006.00364.x

Martinson D.G., 1987, Age dating and the orbital theory of the ice ages, Quaternary Research, 27, 1, 10.1016/0033-5894(87)90046-9

10.1890/04-0139

10.1007/s11258-004-0025-1

10.1016/S0031-0182(03)00281-5

10.1111/j.1365-2486.2007.01404.x

10.1016/S0169-5347(00)89171-5

10.1038/nature04246

10.1016/j.tree.2007.10.001

10.1007/BF02185672

10.1046/j.1365-3040.2001.00685.x

Rasband W.2008.ImageJ: image processing and analysis in Java. Research Services Branch National Institute of Mental Health. Available athttp://rsbweb.nih.gov/ij/Accessed 12 September 2009.

10.4067/S0716-078X2002000400007

10.1016/j.foreco.2004.03.025

10.1111/j.1526-100X.2005.00015.x

10.1600/036364406778388629

10.1007/s00606-007-0543-0

Schnelle F., 1955, Pflanzen‐Phanologie

10.1016/j.baae.2007.11.008

Simpson B.B., 1986, High altitude tropical biogeography, 304

10.1016/0034-6667(78)90022-2

10.1002/jqs.1224

Smith N., 2004, Flowering plants of the neotropics

Soulé M.E., 1980, Conservation biology: an evolutionary–ecological perspective

10.1016/j.foreco.2005.08.048

Tomos M.2008.Volcanism and climate in the central Andes: the tephra record from Lake Titicaca. MEarthSci thesis University of Oxford Oxford UK.

10.1016/S0921-8181(02)00184-4

Whitlock C., 2001, Tracking environmental change using lake sediments, Vol. 3: Terrestrial, algal and siliceous indicators, 75

10.1098/rstb.2006.1977