Long-term characterization of the Flinders Sensitive Line rodent model of human depression: Behavioral and PET evidence of a dysfunctional entorhinal cortex
Tài liệu tham khảo
Kessler, 2005, Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication, Arch. Gen. Psychiatry, 62, 617, 10.1001/archpsyc.62.6.617
American Psychiatric Association, 2013
Schlaepfer, 2013, Rapid effects of deep brain stimulation for treatment-resistant major depression, Biol. Psychiatry, 73, 1204, 10.1016/j.biopsych.2013.01.034
Anderson, 2012, Deep brain stimulation for treatment-resistant depression: efficacy, safety and mechanisms of action, Neurosci. Biobehav. Rev., 36, 1920, 10.1016/j.neubiorev.2012.06.001
Taghva, 2012, Deep brain stimulation for treatment-resistant depression, World Neurosurg., 80, 17
Coenen, 2011, Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans, Neurosci. Biobehav. Rev., 35, 1971, 10.1016/j.neubiorev.2010.12.009
Panksepp, 2011, The basic emotional circuits of mammalian brains: do animals have affective lives?, Neurosci. Biobehav. Rev., 35, 1791, 10.1016/j.neubiorev.2011.08.003
Panksepp, 1998
Hendrie, 2013, The failure of the antidepressant drug discovery process is systemic, J. Psychopharmacol., 27, 407, 10.1177/0269881112466185
Robinson, 2012, Can a single animal model ever provide a valid approach to study clinical depression? A response to: the failure of the antidepressant drug discovery process is systemic (Hendrie CA and Pickles AR), J. Psychopharmacol., 10.1177/0269881112466185b
Forbes, 1996, Chronic mild stress and sucrose consumption: validity as a model of depression, Physiol. Behav., 60, 1481, 10.1016/S0031-9384(96)00305-8
West, 1990, Neurobehavioral studies of forced swimming: the role of learning and memory in the forced swim test, Prog. Neuropsychopharmacol. Biol. Psychiatry, 14, 863, 10.1016/0278-5846(90)90073-P
McArthur, 2006, Animal models of depression in drug discovery: a historical perspective, Pharmacol. Biochem. Behav., 84, 436, 10.1016/j.pbb.2006.06.005
Nestler, 2010, Animal models of neuropsychiatric disorders, Nat. Neurosci., 13, 1161, 10.1038/nn.2647
Neumann, 2011, Animal models of depression and anxiety: what do they tell us about human condition?, Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, 1357, 10.1016/j.pnpbp.2010.11.028
Overstreet, 2012, Modeling depression in animal models, Methods Mol. Biol. Clifton N. J., 829, 125, 10.1007/978-1-61779-458-2_7
Overstreet, 2013, The flinders sensitive line rat model of depression-25 years and still producing, Pharmacol. Rev., 65, 143, 10.1124/pr.111.005397
Hasegawa, 2006, Brain 5-HT synthesis in the Flinders Sensitive Line rat model of depression: an autoradiographic study, Neurochem. Int., 48, 358, 10.1016/j.neuint.2005.11.012
Yadid, 2001, Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depression, Brain Res., 896, 43, 10.1016/S0006-8993(00)03248-0
Jiménez-Vasquez, 2000, Neuropeptide Y in male and female brains of Flinders Sensitive Line, a rat model of depression. Effects of electroconvulsive stimuli, J. Psychiatr. Res., 34, 405, 10.1016/S0022-3956(00)00036-4
Zambello, 2008, Acute stress differentially affects corticotropin-releasing hormone mRNA expression in the central amygdala of the depressed flinders sensitive line and the control flinders resistant line rats, Prog. Neuropsychopharmacol. Biol. Psychiatry, 32, 651, 10.1016/j.pnpbp.2007.11.008
R.D. Porsolt, G., Brossard, C., Hautbois, S. Roux, Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice, Curr. Protoc. Neurosci. in: Board Jacqueline N., Crawley A.l. (Ed.) Unit 8.10A, (2001) 10.1002/0471142301 ns0810as14 (Chapter 8).
Slattery, 2012, Using the rat forced swim test to assess antidepressant-like activity in rodents, Nat. Protoc., 7, 1009, 10.1038/nprot.2012.044
Knutson, 1998, Anticipation of play elicits high-frequency ultrasonic vocalizations in young rats, J. Comp. Psychol., 112, 65, 10.1037/0735-7036.112.1.65
Burgdorf, 2000, Anticipation of rewarding electrical brain stimulation evokes ultrasonic vocalization in rats, Behav. Neurosci., 114, 320, 10.1037/0735-7044.114.2.320
Burgdorf, 2006, The neurobiology of positive emotions, Neurosci. Biobehav. Rev., 30, 173, 10.1016/j.neubiorev.2005.06.001
Sadananda, 2008, Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain, Neurosci. Lett., 435, 17, 10.1016/j.neulet.2008.02.002
Wöhr, 2008, Effects of experience and context on 50-kHz vocalizations in rats, Physiol. Behav., 93, 766, 10.1016/j.physbeh.2007.11.031
Kirch, 2013, Early deficits in declarative and procedural memory dependent behavioral function in a transgenic rat model of Huntington’s disease, Behav. Brain Res., 239, 15, 10.1016/j.bbr.2012.10.048
Pol-Bodetto, 2011, The double-H maze test, a novel, simple, water-escape memory task: acquisition, recall of recent and remote memory, and effects of systemic muscarinic or NMDA receptor blockade during training, Behav. Brain Res., 218, 138, 10.1016/j.bbr.2010.11.043
Schiffer, 2006, Serial microPET measures of the metabolic reaction to a microdialysis probe implant, J. Neurosci. Methods, 155, 272, 10.1016/j.jneumeth.2006.01.027
Nestler, 2006, The mesolimbic dopamine reward circuit in depression, Biol. Psychiatry, 59, 1151, 10.1016/j.biopsych.2005.09.018
Nestler, 2002, Neurobiology of depression, Neuron, 34, 13, 10.1016/S0896-6273(02)00653-0
Russo, 2013, The brain reward circuitry in mood disorders, Nat. Rev. Neurosci., 14, 609, 10.1038/nrn3381
Price, 2012, Neural circuits underlying the pathophysiology of mood disorders, Trends Cogn. Sci., 16, 61, 10.1016/j.tics.2011.12.011
Overstreet, 1986, Stress-induced immobility in rats with cholinergic supersensitivity, Biol. Psychiatry, 21, 657, 10.1016/0006-3223(86)90127-7
Janowsky, 1974, Acetylcholine and depression, Psychosom. Med., 36, 248, 10.1097/00006842-197405000-00008
Friedman, 2005, Variability of the mesolimbic neuronal activity in a rat model of depression, Neuroreport, 16, 513, 10.1097/00001756-200504040-00019
Friedman, 2009, Early prediction of the effectiveness of antidepressants: inputs from an animal model, J. Mol. Neurosci., 39, 256, 10.1007/s12031-009-9176-9
Altemus, 2014, Sex differences in anxiety and depression clinical perspectives, Front. Neuroendocrinol., 35, 320, 10.1016/j.yfrne.2014.05.004
Ayensu, 1995, Effects of chronic mild stress on serum complement activity, saccharin preference, and corticosterone levels in Flinders lines of rats, Physiol. Behav., 57, 165, 10.1016/0031-9384(94)00204-I
Gerritsen, 2011, Depression, hypothalamic pituitary adrenal axis, and hippocampal and entorhinal cortex volumes–the SMART Medea study, Biol. Psychiatry, 70, 373, 10.1016/j.biopsych.2011.01.029
MacQueen, 2011, The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research?, Mol. Psychiatry, 16, 252, 10.1038/mp.2010.80
Knoops, 2012, Loss of entorhinal cortex and hippocampal volumes compared to whole brain volume in normal aging: the SMART-Medea study, Psychiatry Res., 203, 31, 10.1016/j.pscychresns.2011.12.002
Knierim, 2015, From the GPS to HM: Place cells, grid cells, and memory, Hippocampus, 25, 719, 10.1002/hipo.22453
Leutgeb, 2005, Place cells, spatial maps and the population code for memory, Curr. Opin. Neurobiol., 15, 738, 10.1016/j.conb.2005.10.002
Jacobs, 2010, A sense of direction in human entorhinal cortex, Proc. Natl. Acad. Sci., 107, 6487, 10.1073/pnas.0911213107
Chen, 2008, Changes in rat hippocampal CA1 synapses following imipramine treatment, Hippocampus, 18, 631, 10.1002/hipo.20423
Chen, 2010, Imipramine treatment increases the number of hippocampal synapses and neurons in a genetic animal model of depression, Hippocampus, 20, 1376, 10.1002/hipo.20718
Chen, 2013, Mitochondrial plasticity of the hippocampus in a genetic rat model of depression after antidepressant treatment, Synapse, 67, 127, 10.1002/syn.21622
Mata, 1980, Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity, J. Neurochem., 34, 213, 10.1111/j.1471-4159.1980.tb04643.x
Sokoloff, 1993, Sites and mechanisms of function-related changes in energy metabolism in the nervous system, Dev. Neurosci., 15, 194, 10.1159/000111335
Hajszan, 2005, Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus, Eur. J. Neurosci., 21, 1299, 10.1111/j.1460-9568.2005.03968.x
Schultz, 2014, Anatomy of the hippocampal formation, Front. Neurol. Neurosci., 34, 6, 10.1159/000360925
Mayberg, 2000, Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response, Biol. Psychiatry, 48, 830, 10.1016/S0006-3223(00)01036-2
Alcaro, 2011, The SEEKING mind: primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression, Neurosci. Biobehav. Rev., 35, 1805, 10.1016/j.neubiorev.2011.03.002
Ikemoto, 1999, The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking, Brain Res. Brain Res. Rev., 31, 6, 10.1016/S0165-0173(99)00023-5
Dobi, 2010, Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons, J. Neurosci., 30, 218, 10.1523/JNEUROSCI.3884-09.2010
Howe, 2013, Prolonged dopamine signalling in striatum signals proximity and value of distant rewards, Nature, 500, 575, 10.1038/nature12475
Schultz, 2013, Updating dopamine reward signals, Curr. Opin. Neurobiol., 23, 229, 10.1016/j.conb.2012.11.012
C.D. Blaha, 1997, Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens, Eur. J. Neurosci., 9, 902, 10.1111/j.1460-9568.1997.tb01441.x
Lee, 2007, High-frequency stimulation of the subthalamic nucleus increases glutamate in the subthalamic nucleus of rats as demonstrated by in vivo enzyme-linked glutamate sensor, Brain Res., 1162, 121, 10.1016/j.brainres.2007.06.021
Todd, 1999, Modulation of ventral tegmental area dopamine cell activity by the ventral subiculum and entorhinal cortex, Ann. N.Y. Acad. Sci., 877, 688, 10.1111/j.1749-6632.1999.tb09302.x
Akil, 1994, The distribution of tyrosine hydroxylase-immunoreactive fibers in the human entorhinal cortex, Neuroscience, 60, 857, 10.1016/0306-4522(94)90268-2
Caruana, 2008, Dopaminergic suppression of synaptic transmission in the lateral entorhinal cortex, Neural Plast., 2008, 10.1155/2008/203514