Long-term PM2.5 source analyses in New York City from the perspective of dispersion normalized PMF

Atmospheric Environment - Tập 272 - Trang 118949 - 2022
Yunle Chen1, David Q. Rich1,2,3, Philip K. Hopke1,4
1Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 USA
2Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
3Department of Medicine, Division of Pulmonary and Critical Care Medicine University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
4Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA

Tài liệu tham khảo

Blanchard, 2021, Ambient PM2.5 organic and elemental carbon in New York City: changing source contributions during a decade of large emission reductions, J. Air Waste Manag. Assoc., 71, 995, 10.1080/10962247.2021.1914773 Chandrasekaran, 2012, Chemical composition of wood chips and wood pellets, Energy Fuel., 26, 4932, 10.1021/ef300884k Dai, 2020, Dispersion normalized PMF provides insights into the significant changes in source contributions to PM2.5 after the COVID-19 outbreak, Environ. Sci. Technol., 54, 9917, 10.1021/acs.est.0c02776 Dai, 2021, Changes in source contributions to particle number concentrations after the COVID-19 outbreak: insights from a dispersion normalized PMF, Sci. Total Environ., 759, 10.1016/j.scitotenv.2020.143548 Gu, 2022, Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China, Environ. Int., 158, 10.1016/j.envint.2021.106979 Hersbach, 2020, The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999, 10.1002/qj.3803 Hopke, 2016, Review of receptor modeling methods for source apportionment, J. Air Waste Manag. Assoc., 66, 237, 10.1080/10962247.2016.1140693 Hopke, 2020, Global review of recent source apportionments for airborne particulate matter, Sci. Total Environ., 740, 10.1016/j.scitotenv.2020.140091 Masiol, 2019, Long-term trends (2005–2016) of source apportioned PM2.5 across New York State, Atmos. Environ., 201, 110, 10.1016/j.atmosenv.2018.12.038 Murray, 2020, Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019, Lancet, 396, 1223, 10.1016/S0140-6736(20)30752-2 Paatero, 1997, Least squares formulation of robust non-negative factor analysis, Chemometr. Intell. Lab. Syst., 37, 23, 10.1016/S0169-7439(96)00044-5 Paatero, 1994, Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111, 10.1002/env.3170050203 Peltier, 2011, Spatial and seasonal distribution of aerosol chemical components in New York City: (2) Road dust and other tracers of traffic-generated air pollution, J. Expo. Sci. Environ. Epidemiol., 21, 484, 10.1038/jes.2011.15 Polissar, 1998, Atmospheric aerosol over Alaska: 2. Elemental composition and sources, J. Geophys. Res. Atmos., 103, 19045, 10.1029/98JD01212 Rattigan, 2016, Long term trends in New York: PM2.5 mass and particle components, Aerosol Air Qual. Res., 16, 1191, 10.4209/aaqr.2015.05.0319 Seidel, 2012, Climatology of the planetary boundary layer over the continental United States and Europe, J. Geophys. Res. Atmos., 117, 10.1029/2012JD018143 Seinfeld, 2016 Sofowote, 2021, Sources, variability and parameterizations of intra-city factors obtained from dispersion normalized multi-time resolution factor analyses of PM2.5 in an urban environment, Sci. Total Environ., 761, 10.1016/j.scitotenv.2020.143225 Solomon, 2014, U.S. National PM2.5 chemical speciation monitoring networks – CSN and IMPROVE: description of networks, J. Air Waste Mange. Assoc., 64, 1410, 10.1080/10962247.2014.956904 Song, 2021, Estimating uncertainties of source contributions to PM2. 5 using moving window evolving dispersion normalized PMF, Environ. Pol., 286, 10.1016/j.envpol.2021.117576 Squizzato, 2018, A long-term source apportionment of PM2.5 in New York State during 2005–2016, Atmos. Environ., 192, 35, 10.1016/j.atmosenv.2018.08.044 Squizzato, 2018, PM2.5 and gaseous pollutants in New York State during 2005–2016: spatial variability, temporal trends, and economic influences, Atmos. Environ., 183, 209, 10.1016/j.atmosenv.2018.03.045 Wang, 2012, Multiple-year black carbon measurements and source apportionment using Delta-C in Rochester, New York, J. Air Waste Manag. Assoc., 62, 880, 10.1080/10962247.2012.671792 Wang, 2012, Source apportionment of airborne particulate matter using inorganic and organic species as tracers, Atmos. Environ., 55, 525, 10.1016/j.atmosenv.2012.03.073 Zhao, 2007, Spatial distribution of source locations for particulate nitrate and sulfate in the upper-midwestern United States, Atmos. Environ., 41, 1831, 10.1016/j.atmosenv.2006.10.060 Zhou, 2019, Ambient ammonia concentrations across New York state, J. Geophys. Res. Atmos., 124, 8287, 10.1029/2019JD030380