Long-term CRISPR locus dynamics and stable host-virus co-existence in subsurface fractured shales

Current Biology - Tập 33 - Trang 3125-3135.e4 - 2023
Kaela K. Amundson1, Simon Roux2, Jenna L. Shelton3, Michael J. Wilkins1
1Colorado State University, Department of Soil & Crop Sciences, 301 University Ave., Fort Collins, CO 80523, USA
2DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
3United States Geological Survey, 12201 Sunrise Valley Dr, Reston, VA 20192, USA

Tài liệu tham khảo

Makarova, 2020, Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants, Nat. Rev. Microbiol., 18, 67, 10.1038/s41579-019-0299-x Makarova, 2013, Comparative genomics of defense systems in archaea and bacteria, Nucleic Acids Res., 41, 4360, 10.1093/nar/gkt157 Staals, 2013, Distribution and mechanism of the Type I CRISPR-Cas systems, 145 Burstein, 2016, Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems, Nat. Commun., 7, 10613, 10.1038/ncomms10613 Hampton, 2020, The arms race between bacteria and their phage foes, Nature, 577, 327, 10.1038/s41586-019-1894-8 Barrangou, 2007, CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709, 10.1126/science.1138140 Jackson, 2017, CRISPR-Cas: adapting to change, Science, 356, eaal5056, 10.1126/science.aal5056 Hille, 2018, The biology of CRISPR-Cas: backward and forward, Cell, 172, 1239, 10.1016/j.cell.2017.11.032 Koonin, 2019, Origins and evolution of CRISPR-Cas systems, Philos. Trans. R. Soc. Lond. B Biol. Sci., 374, 20180087, 10.1098/rstb.2018.0087 Barrangou, 2014, CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity, Mol. Cell, 54, 234, 10.1016/j.molcel.2014.03.011 Andersson, 2008, Virus population dynamics and acquired virus resistance in natural microbial communities, Science, 320, 1047, 10.1126/science.1157358 Horvath, 2010, CRISPR/Cas, the immune system of bacteria and Archaea, Science, 327, 167, 10.1126/science.1179555 Horvath, 2008, Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus, J. Bacteriol., 190, 1401, 10.1128/JB.01415-07 Watson, 2021, Coevolution between bacterial CRISPR-Cas systems and their bacteriophages, Cell Host Microbe, 29, 715, 10.1016/j.chom.2021.03.018 Edwards, 2016, Computational approaches to predict bacteriophage–host relationships, FEMS Microbiol. Rev., 40, 258, 10.1093/femsre/fuv048 Anderson, 2011, Using CRISPRs as a metagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage, FEMS Microbiol. Ecol., 77, 120, 10.1111/j.1574-6941.2011.01090.x Sanguino, 2015, Linking environmental prokaryotic viruses and their host through CRISPRs, FEMS Microbiol. Ecol., 91, fiv046, 10.1093/femsec/fiv046 McKay, 2022, Sulfur cycling and host-virus interactions in Aquificales-dominated biofilms from Yellowstone’s hottest ecosystems, ISME J., 16, 842, 10.1038/s41396-021-01132-4 Emerson, 2013, Virus-host and CRISPR dynamics in archaea-dominated hypersaline lake Tyrrell, Victoria, Australia, Archaea, 2013, 370871, 10.1155/2013/370871 Emerson, 2018, Host-linked soil viral ecology along a permafrost thaw gradient, Nat. Microbiol., 3, 870, 10.1038/s41564-018-0190-y Amundson, 2022, Microbial colonization and persistence in deep fractured shales is guided by metabolic exchanges and viral predation, Microbiome, 10, 5, 10.1186/s40168-021-01194-8 Berg, 2021, Host population diversity as a driver of viral infection cycle in wild populations of green sulfur bacteria with long standing virus-host interactions, ISME J., 15, 1569, 10.1038/s41396-020-00870-1 Daly, 2019, Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing, Nat. Microbiol., 4, 352, 10.1038/s41564-018-0312-6 Stern, 2012, CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome, Genome Res., 22, 1985, 10.1101/gr.138297.112 Roux, 2016, Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses, Nature, 537, 689, 10.1038/nature19366 Minot, 2013, Rapid evolution of the human gut virome, Proc. Natl. Acad. Sci. USA, 110, 12450, 10.1073/pnas.1300833110 Paez-Espino, 2016, Uncovering Earth’s virome, Nature, 536, 425, 10.1038/nature19094 Weinberger, 2012, Viral diversity threshold for adaptive immunity in prokaryotes, mBio, 3, 10.1128/mBio.00456-12 Meaden, 2022, High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems, Curr. Biol., 32, 220, 10.1016/j.cub.2021.10.038 Broniewski, 2020, The effect of phage genetic diversity on bacterial resistance evolution, ISME J., 14, 828, 10.1038/s41396-019-0577-7 Bernheim, 2017, Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria, Nat. Commun., 8, 2094, 10.1038/s41467-017-02350-1 Westra, 2016, Evolution and ecology of CRISPR, Annu. Rev. Ecol. Evol. Syst., 47, 307, 10.1146/annurev-ecolsys-121415-032428 Weissman, 2019, Visualization and prediction of CRISPR incidence in microbial trait-space to identify drivers of antiviral immune strategy, ISME J., 13, 2589, 10.1038/s41396-019-0411-2 Deveau, 2008, Phage response to CRISPR-encoded resistance in Streptococcus thermophilus, J. Bacteriol., 190, 1390, 10.1128/JB.01412-07 Bradde, 2017, Dynamics of adaptive immunity against phage in bacterial populations, PLoS Comput. Biol., 13, e1005486, 10.1371/journal.pcbi.1005486 Garrett, 2021, Pruning and tending immune memories: spacer dynamics in the CRISPR array, Front. Microbiol., 12, 664299, 10.3389/fmicb.2021.664299 Lopez-Sanchez, 2012, The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome, Mol. Microbiol., 85, 1057, 10.1111/j.1365-2958.2012.08172.x Guerrero, 2021, Long-run bacteria-phage coexistence dynamics under natural habitat conditions in an environmental biotechnology system, ISME J., 15, 636, 10.1038/s41396-020-00802-z Sun, 2016, Metagenomic reconstructions of bacterial CRISPR loci constrain population histories, ISME J., 10, 858, 10.1038/ismej.2015.162 Levin, 2013, The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity, PLoS Genet., 9, e1003312, 10.1371/journal.pgen.1003312 Vale, 2015, Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus, Proc. Biol. Sci., 282, 20151270 Martynov, 2017, Optimal number of spacers in CRISPR arrays, PLoS Comput. Biol., 13, e1005891, 10.1371/journal.pcbi.1005891 McGinn, 2016, CRISPR-Cas systems optimize their immune response by specifying the site of spacer integration, Mol. Cell, 64, 616, 10.1016/j.molcel.2016.08.038 Bradde, 2020, The size of the immune repertoire of bacteria, Proc. Natl. Acad. Sci. USA, 117, 5144, 10.1073/pnas.1903666117 Childs, 2012, Multiscale model of Crispr-induced coevolutionary dynamics: diversification at the interface of Lamarck and Darwin, Evolution, 66, 2015, 10.1111/j.1558-5646.2012.01595.x Daly, 2016, Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales, Nat. Microbiol., 1, 16146, 10.1038/nmicrobiol.2016.146 Cluff, 2014, Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus Shale Gas wells, Environ. Sci. Technol., 48, 6508, 10.1021/es501173p Mouser, 2016, Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface, FEMS Microbiol. Ecol., 92, fiw166, 10.1093/femsec/fiw166 Booker, 2019, Deep-subsurface pressure stimulates metabolic plasticity in shale-colonizing Halanaerobium spp., Appl. Environ. Microbiol., 85, e00018-19, 10.1128/AEM.00018-19 Wang, 2019, Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States, Water Res., 164, 114942, 10.1016/j.watres.2019.114942 Hull, 2018, Succession of toxicity and microbiota in hydraulic fracturing flowback and produced water in the Denver–Julesburg Basin, Sci. Total Environ., 644, 183, 10.1016/j.scitotenv.2018.06.067 Murali Mohan, 2013, Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction, Environ. Sci. Technol., 47, 13141, 10.1021/es402928b Murali Mohan, 2013, Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas, FEMS Microbiol. Ecol., 86, 567, 10.1111/1574-6941.12183 Struchtemeyer, 2012, Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA, FEMS Microbiol. Ecol., 81, 13, 10.1111/j.1574-6941.2011.01196.x Hockenberry, 2021, BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains, PeerJ, 9, e11396, 10.7717/peerj.11396 Whitman, 1998, Prokaryotes: the unseen majority, Proc. Natl. Acad. Sci. USA, 95, 6578, 10.1073/pnas.95.12.6578 McMahon, 2014, Weighing the deep continental biosphere, FEMS Microbiol. Ecol., 87, 113, 10.1111/1574-6941.12196 Flemming, 2019, Bacteria and archaea on Earth and their abundance in biofilms, Nat. Rev. Microbiol., 17, 247, 10.1038/s41579-019-0158-9 Tinker, 2020, Geochemistry and microbiology predict environmental niches with conditions favoring potential microbial activity in the Bakken shale, Front. Microbiol., 11, 1781, 10.3389/fmicb.2020.01781 Stemple, 2021, Biogeochemistry of the Antrim shale natural gas reservoir, ACS Earth Space Chem., 5, 1752, 10.1021/acsearthspacechem.1c00087 John, 2011, A simple and efficient method for concentration of ocean viruses by chemical flocculation, Environ. Microbiol. Rep., 3, 195, 10.1111/j.1758-2229.2010.00208.x Skennerton, 2013, Crass: identification and reconstruction of CRISPR from unassembled metagenomic data, Nucleic Acids Res., 41, e105, 10.1093/nar/gkt183 Doron, 2018, Systematic discovery of antiphage defense systems in the microbial pangenome, Science, 359, eaar4120, 10.1126/science.aar4120 Oliveira, 2014, The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts, Nucleic Acids Res., 42, 10618, 10.1093/nar/gku734 Chopin, 2005, Phage abortive infection in lactococci: variations on a theme, Curr. Opin. Microbiol., 8, 473, 10.1016/j.mib.2005.06.006 Dy, 2014, A widespread bacteriophage abortive infection system functions through a type IV toxin–antitoxin mechanism, Nucleic Acids Res., 42, 4590, 10.1093/nar/gkt1419 van Houte, 2016, The diversity-generating benefits of a prokaryotic adaptive immune system, Nature, 532, 385, 10.1038/nature17436 Stern, 2011, The phage-host arms race: shaping the evolution of microbes, BioEssays, 33, 43, 10.1002/bies.201000071 Weitz, 2013, Phage–bacteria infection networks, Trends Microbiol., 21, 82, 10.1016/j.tim.2012.11.003 Peng, 2012, IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth, Bioinformatics, 28, 1420, 10.1093/bioinformatics/bts174 Kang, 2019, MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies, PeerJ, 7, e7359, 10.7717/peerj.7359 Parks, 2015, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res., 25, 1043, 10.1101/gr.186072.114 Olm, 2017, dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication, ISME J., 11, 2864, 10.1038/ismej.2017.126 Chaumeil, 2019, GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database, Bioinformatics, 36, 1925, 10.1093/bioinformatics/btz848 Shaffer, 2020, DRAM for distilling microbial metabolism to automate the curation of microbiome function, Nucleic Acids Res., 48, 8883, 10.1093/nar/gkaa621 Guo, 2021, VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses, Microbiome, 9, 37, 10.1186/s40168-020-00990-y Yi, 2020, AcrFinder: genome mining anti-CRISPR operons in prokaryotes and their viruses, Nucleic Acids Res., 48, W358, 10.1093/nar/gkaa351 Brushnell Bland, 2007, CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats, BMC Bioinformatics, 8, 209, 10.1186/1471-2105-8-209 Russel, 2020, CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas loci, CRISPR J., 3, 462, 10.1089/crispr.2020.0059 Gregory, 2022, MetaPop: a pipeline for macro- and microdiversity analyses and visualization of microbial and viral metagenome-derived populations, Microbiome, 10, 49, 10.1186/s40168-022-01231-0 Callahan, 2016, DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581, 10.1038/nmeth.3869 Bowers, 2017, Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea, Nat. Biotechnol., 35, 725, 10.1038/nbt.3893 Nayfach, 2021, CheckV assesses the quality and completeness of metagenome-assembled viral genomes, Nat. Biotechnol., 39, 578, 10.1038/s41587-020-00774-7 Bin Jang, 2019, Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks, Nat. Biotechnol., 37, 632, 10.1038/s41587-019-0100-8 Li, 2009, The Sequence Alignment/Map format and SAMtools, Bioinformatics, 25, 2078, 10.1093/bioinformatics/btp352