Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự thay đổi lâu dài (1970-2016) trong địa hóa nước ngầm tại aquifer High Plains ở phía nam trung Kansas, Hoa Kỳ
Tóm tắt
Sự thay đổi trong hóa học nước ngầm trong aquifer Great Bend Prairie, một phần của aquifer High Plains ở phía nam trung Kansas (Mỹ), đã được nghiên cứu nhằm hiểu rõ hơn về các yếu tố ảnh hưởng đến chất lượng nước ngầm và bền vững của aquifer. Để đánh giá sự thay đổi, các mẫu nước ngầm từ 22 giếng quan trắc đã được phân tích trong năm 2016. Kết quả sau đó được so sánh với dữ liệu thu được trước đó từ cùng các giếng trong những năm 1970 và 1980. Trong số các giếng được lấy mẫu, có 13 giếng được lắp đặt gần mực nước ngầm (độ sâu trung bình 22 m) và 9 giếng được lắp đặt gần đáy aquifer (độ sâu trung bình 41 m). Mức nitrate trong năm 2016 cao hơn đối với 20 trong số 21 giếng có dữ liệu để so sánh. Mức tăng trung bình cho các mẫu từ aquifer nông và đáy aquifer lần lượt là 9.5 (độ lệch chuẩn, SD, 12.9) và 3.4 (SD 3.1) mg/L tính theo N. Tỷ lệ đồng vị nitrate (δ15N-NO3 và δ18O-NO3) của các mẫu năm 2016 nhất quán với quá trình nitrat hóa của phân bón dựa trên ammonium như là nguồn gốc năng lượng nitrat với những đóng góp tiềm năng từ chất thải động vật. Tổng mức chất hòa tan trong mẫu cũng cao hơn ở chín trong số 12 giếng aquifer nông và bốn trong số tám giếng đáy aquifer, với mức tăng trung bình lần lượt là 191 (SD 238) và 194 (SD 133) mg/L. Tổng thể, các kết quả này cho thấy chất lượng nước đã giảm đáng kể trong 40 năm qua chủ yếu do việc sử dụng phân bón, nhưng sự pha trộn nước ngầm, thoát hơi nước và có thể là đầu vào từ chất thải động vật cũng đã ảnh hưởng đến hóa học nước ngầm. Những phát hiện này giúp xác định quy mô của sự suy thoái chất lượng nước trong aquifer High Plains.
Từ khóa
#hóa học nước ngầm #aquifer High Plains #sự thay đổi hóa học #chất lượng nước #phân bón #chất thải động vậtTài liệu tham khảo
Ascott MJ, Gooddy DC, Wang L, Stuart ME, Lewis MA, Ward RS, Binley AM (2017) Global patterns of nitrate storage in the vadose zone. Nat Comm 8. https://doi.org/10.1038/s41467-017-01321-w
Bailey RT, Gates TK, Ahmadi M (2014) Simulating reactive transport of selenium coupled with nitrogen in a regional-scale irrigated groundwater system. J Hydrol 515:29–46. https://doi.org/10.1016/j.jhydrol.2014.04.039
Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM (2011) The thermodynamic ladder in geomicrobiology. Am J Sci 311(3):183–210
Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10(1):153–179. https://doi.org/10.1007/s10040-001-0183-3
Buddemeier R (1994) Overview and summary of FY94 mineral intrusion studies. Open File Report 94-28a, Kansas Geological Survey, Lawrence, KS, 13 p
Burow KR, Dubrovsky NM, Shelton JL (2007) Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, California, USA. Hydrogeol J 15(5):991–1007. https://doi.org/10.1007/s10040-006-0148-7
Burow KR, Shelton JL, Dubrovsky NM (2008) Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California. J Env Qual 37(5):S249–S263
Butler JJ, Stotler RL, Whittemore DO, Reboulet EC (2013) Interpretation of water level changes in the High Plains Aquifer in western Kansas. Ground Water 51(2):180–190. https://doi.org/10.1111/j.1745-6584.2012.00988.x
Butler JJ, Whittemore DO, Reboulet EC, Knobbe S, Wilson BB, Bohling GC (2019) High Plains Aquifer Index Well Program: 2018 annual report. Open-File Report no. 2019–19, Kansas Geological Survey, Lawrence, KS
Chaudhuri S, Ale S (2014) Long term (1960-2010) trends in groundwater contamination and salinization in the Ogallala aquifer in Texas. J Hydro 513:376–390. https://doi.org/10.1016/j.jhydrol.2014.03.033
Chen Z, Nie Z, Zhang G, Wan L, Shen J (2006) Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China. Hydrogeol J 14(8):1635–1651. https://doi.org/10.1007/s10040-006-0075-7
Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703. https://doi.org/10.1126/science.133.3465.1702
Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36(2):338–350
Dodge DA, Hoffman BR, Horsch ML (1978) Soil survey of Stafford County. US Department of Agriculture, Lawrence, KS, 59 pp
Fader S, Stullken L (1978) Geohydrology of the Great Bend Prairie, south-central Kansas. Irrigation Series 4, Kansas Geological Survey, Lawrence, KS, 19 pp
Gates TK, Cody BM, Donnelly JP, Herting AW, Bailey RT, Price JM (2009) Assessing selenium contamination in the irrigated stream–aquifer system of the Arkansas River, Colorado. J Environ Qual 38(6):2344–2356. https://doi.org/10.2134/jeq2008.0499
Guerra K, Dahm K, Dundorf S (2011) Oil and gas produced water management and beneficial use in the western United States. Science and Technology Program Report no. 157, US Department of the Interior Bureau of Reclamation, Washington, DC, 113 pp
Gurdak JJ, McMahon PB, Dennehy K, Qi S (2009) Water Quality in the High Plains Aquifer, Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1999–2004. US Geol Surv Circ 1337, 63 pp
Gutentag E, Heimes F, Krothe N, Luckey R, Weeks J (1984) Geohydology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geol Surv Prof Pap 1400-B, 63 p
Hausladen DM, Alexander-Ozinskas A, McClain C, Fendorf S (2018) Hexavalent chromium sources and distribution in California groundwater. Environ Sci Technol 52(15):8242–8251. https://doi.org/10.1021/acs.est.7b06627
Juntakut P, Snow DD, Haacker EMK, Ray C (2019) The long-term effect of agricultural, vadose zone and climatic factors on nitrate contamination in the Nebraska’s groundwater system. J Contam Hydro 220:33–48. https://doi.org/10.1016/j.jconhyd.2018.11.007
Kharaka YK, Kakouros E, Thordsen JJ, Ambats G, Abbott MM (2007) Fate and groundwater impacts of produced water releases at OSPER “B” site, Osage County, Oklahoma. Appl Geochem 22(10):2164–2176. https://doi.org/10.1016/j.apgeochem.2007.04.005
Kirk MF, Jin Q, Haller BR (2016) Broad-scale evidence that pH influences the balance between microbial iron and sulfate reduction. Groundwater 54(3):406–413. https://doi.org/10.1111/gwat.12364
Langmuir D (1978) Uranium solution-mineral equilibria at low-temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42(6):547–569. https://doi.org/10.1016/0016-7037(78)90001-7
Latta B (1950) Geology and Ground-Water Resources of Barton and Stafford counties, Kansas. Bulletin 88, Kansas Geological Survey, Lawrence, Kansas, 226 pp
Lenahan MJ, Bristow KL, de Caritat P (2011) Detecting induced correlations in hydrochemistry. Chem Geol 284(1–2):182–192. https://doi.org/10.1016/j.chemgeo.2011.02.018
Lindsey B, Johnson T (2018) Data from decadal change in groundwater quality website, 1988–2014, version 2.0. US Geological Survey. https://doi.org/10.5066/F7N878ZS
Litke D (2001) Historical water-quality data for the High Plains Regional Ground-Water Study Area in Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1930–98. US Geol Surv Water Resour Invest Rep 00-4254, 69 pp
Manning AH, Mills CT, Morrison JM, Ball LB (2015) Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA. Appl Geochem 62:186–199. https://doi.org/10.1016/j.apgeochem.2015.05.010
Mas-Pla J, Mencio A, Bach J, Zamorano M, Soler D, Brusi D (2016) Trace element groundwater pollution hazard in regional hydrogeological systems (Emporda Basin, NE Spain). Water Air Soil Pollut 227(6). https://doi.org/10.1007/s11270-016-2891-2
Maupin MA, Barber NL (2005) Estimated Withdrawals from Principal Aquifers in the United States, 2000. US Geol Surv Circ 1279, 46 pp
McMahon PB, Dennehy KF, Bruce BW, Gurdak JJ, Qi S (2007) Water quality assessment of the High Plains aquifer, 1999–2004. US Geol Surv Prof Pap 1749, 136 pp
Mencio A, Mas-Pla J, Otero N, Regas O, Boy-Roura M, Puig R, Bach J, Domenech C, Zamorano M, Brusi D, Folch A (2016) Nitrate pollution of groundwater: all right..., but nothing else? Sci Total Environ 539:241–251. https://doi.org/10.1016/j.scitotenv.2015.08.151
Mills CT, Goldhaber MB (2012) Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks. Sci Tot Env 435:363–373. https://doi.org/10.1016/j.scitotenv.2012.06.054
Nolan J, Weber KA (2015) Natural uranium contamination in major US aquifers linked to nitrate. Environ Sci Technol Lett 2(8):215–220. https://doi.org/10.1021/acs.estlett.5b00174
Ostrom NE, Knoke KE, Hedin LO, Robertson GP, Smucker AJM (1998) Temporal trends in nitrogen isotope values of nitrate leaching from an agricultural soil. Chem Geol 146(3–4):219–227. https://doi.org/10.1016/s0009-2541(98)00012-6
Pope L, Bruce BW, Hansen CV (2001) Ground-water quality in Quaternary deposits of the central High Plains aquifer, south-central Kansas, 1999. US Geol Surv Water Resour Invest Rep 00-4259, 44 p
Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27(8):2027–2045. https://doi.org/10.1029/91wr00989
Rice KC, Herman JS (2012) Acidification of Earth: an assessment across mechanisms and scales. Appl Geochem 27(1):1–14. https://doi.org/10.1016/j.apgeochem.2011.09.001
Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43(3). https://doi.org/10.1029/2006wr005486
Scanlon BR, Reedy RC, Gates JB, Gowda PH (2010) Impact of agroecosystems on groundwater resources in the Central High Plains, USA. Agric Ecosyst Environ 139(4):700–713. https://doi.org/10.1016/j.agee.2010.10.017
Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci USA 109(24):9320–9325. https://doi.org/10.1073/pnas.1200311109
Shores A, Laituri M, Butters G (2017) Produced water surface spills and the risk for BTEX and naphthalene groundwater contamination. Wat Air Soil Pollut 228(11). https://doi.org/10.1007/s11270-017-3618-8
Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62(4):1458–1460
Townsend MA, Young DP (1992) Factors affecting nitrate concentrations in ground water in east-central Stafford county, Kansas. Open-File Report 92–34, Kansas Geological Survey, Lawrence, KS, 35 pp
van Berk W, Fu Y (2017) Redox roll-front mobilization of geogenic uranium by nitrate input into aquifers: risks for groundwater resources. Environ Sci Technol 51(1):337–345. https://doi.org/10.1021/acs.est.6b01569
Wakida FT, Lerner DN (2005) Non-agricultural sources of groundwater nitrate: a review and case study. Water Res 39(1):3–16. https://doi.org/10.1016/j.watres.2004.07.026
Whittemore DO (1993) Ground-water geochemistry in the mineral intrusion area of Groundwater Management District no. 5, south-central Kansas. Open-File Report 93-2, Kansas Geological Survey, Lawrence, KS, 107 pp
Whittemore DO (1995) Geochemical differentiation of oil and gas brine from other saltwater sources contaminating water resources: case studies from Kansas and Oklahoma. Environ Geosci 2(1):15–31
Whittemore DO (2007) Fate and identification of oil-brine contamination in different hydrogeologic settings. Appl Geochem 22(10):2099–2114. https://doi.org/10.1016/j.apgeochem.2007.04.002
Whittemore DO, Butler JJ, Wilson BB (2018) Status of the High Plains Aquifer in Kansas. Technical Series 22, Kansas Geological Survey, Lawrence, KS, 14 p
Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleemput O, Berglund M, Boeckx P (2009) Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res 43(5):1159–1170. https://doi.org/10.1016/j.watres.2008.12.048
Young DP (1992) Mineral intrusion: geohydrology of Permian bedrock underlying the Great Bend Prairie Aquifer in south-central Kansas. Open-File Report 92-44, Kansas Geological Survey, Lawrence, KS, 47 pp