Long noncoding RNA in cardiac aging and disease

Journal of Molecular Cell Biology - Tập 11 Số 10 - Trang 860-867 - 2019
Noelia Lozano‐Vidal1, Diewertje I. Bink1, Reinier A. Boon1,2,3
1Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
2German Center for Cardiovascular Research, DZHK, Partner Site Rhein-Main, Berlin, Germany
3Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany

Tóm tắt

Abstract

Cardiovascular diseases (CVDs) are the main cause of morbidity and mortality in Western society and present an important age-related risk. With the constant rise in life expectancy, prevalence of CVD in the population will likely increase further. New therapies, especially in the elderly, are needed to combat CVD. This review is focused on the role of long noncoding RNA (lncRNA) in CVD. RNA sequencing experiments in the past decade showed that most RNA does not code for protein, but many RNAs function as ncRNA. Here, we summarize the recent findings of lncRNA regulation in the diseased heart. The potential use of these RNAs as biomarkers of cardiac disease prediction is also discussed.

Từ khóa


Tài liệu tham khảo

Abdelmohsen, 2013, Senescence-associated lncRNAs: senescence-associated long noncoding RNAs, Aging Cell, 12, 890, 10.1111/acel.12115

Bar, 2014, Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction, Nat. Commun., 5, 5863, 10.1038/ncomms6863

Boeckel, 2018, Identification and regulation of the long non-coding RNA Heat2 in heart failure, J. Mol. Cell. Cardiol., 126, 13, 10.1016/j.yjmcc.2018.11.004

Boon, 2016, Long noncoding RNA Meg3 controls endothelial cell aging and function: implications for regenerative angiogenesis, J. Am. Coll. Cardiol., 68, 2589, 10.1016/j.jacc.2016.09.949

Boon, 2013, MicroRNA-34a regulates cardiac ageing and function, Nature, 495, 107, 10.1038/nature11919

Boon, 2016, Long noncoding RNAs: from clinical genetics to therapeutic targets?, J. Am. Coll. Cardiol., 67, 1214, 10.1016/j.jacc.2015.12.051

Bootman, 2011, Atrial cardiomyocyte calcium signalling, Biochim. Biophys. Acta, 1813, 922, 10.1016/j.bbamcr.2011.01.030

Calado, 2009, Telomere diseases, N. Engl. J. Med., 361, 2353, 10.1056/NEJMra0903373

Chen, 2018, Comprehensive transcriptional landscape of porcine cardiac and skeletal muscles reveals differences of aging, Oncotarget, 9, 1524, 10.18632/oncotarget.23290

Christensen, 2009, Ageing populations: the challenges ahead, Lancet, 374, 1196, 10.1016/S0140-6736(09)61460-4

Congrains, 2013, ANRIL: molecular mechanisms and implications in human health, Int. J. Mol. Sci., 14, 1278, 10.3390/ijms14011278

Devaux, 2015, Long noncoding RNAs in cardiac development and ageing, Nat. Rev. Cardiol., 12, 415, 10.1038/nrcardio.2015.55

Efimova, 2017, The FUS protein: physiological functions and a role in amyotrophic lateral sclerosis, Mol. Biol., 51, 387, 10.1134/S0026893317020091

Feridooni, 2015, How cardiomyocyte excitation, calcium release and contraction become altered with age, J. Mol. Cell. Cardiol., 83, 62, 10.1016/j.yjmcc.2014.12.004

Fleg, 2013, Secondary prevention of atherosclerotic cardiovascular disease in older adults: a scientific statement from the American Heart Association, Circulation, 128, 2422, 10.1161/01.cir.0000436752.99896.22

Frangogiannis, 2015, Pathophysiology of myocardial infarction, Compr. Physiol., 5, 1841, 10.1002/cphy.c150006

Frank, 2016, A lncRNA perspective into (re)building the heart, Front. Cell Dev. Biol., 4, 128, 10.3389/fcell.2016.00128

Frankish, 2019, GENCODE reference annotation for the human and mouse genomes, Nucleic Acids Res., 47, D766, 10.1093/nar/gky955

Frey, 2003, Cardiac hypertrophy: the good, the bad, and the ugly, Annu. Rev. Physiol., 65, 45, 10.1146/annurev.physiol.65.092101.142243

Gaeta, 2017, European cardiovascular mortality over the last three decades: evaluation of time trends, forecasts for 2016, Ann. Ig., 29, 206

Greco, 2015, Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure, Nat. Rev. Cardiol., 12, 488, 10.1038/nrcardio.2015.71

Han, 2015, Long non-coding RNA and chromatin remodeling, RNA Biol., 12, 1094, 10.1080/15476286.2015.1063770

Han, 2014, A long noncoding RNA protects the heart from pathological hypertrophy, Nature, 514, 102, 10.1038/nature13596

Heidenreich, 2011, Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association, Circulation, 123, 933, 10.1161/CIR.0b013e31820a55f5

Heineke, 2006, Regulation of cardiac hypertrophy by intracellular signalling pathways, Nat. Rev. Mol. Cell Biol., 7, 589, 10.1038/nrm1983

Hermans-Beijnsberger, 2018, Long non-coding RNAs in the failing heart and vasculature, Noncoding RNA Res., 3, 118, 10.1016/j.ncrna.2018.04.002

Hnisz, 2013, Super-enhancers in the control of cell identity and disease, Cell, 155, 934, 10.1016/j.cell.2013.09.053

Holdt, 2010, ANRIL expression is associated with atherosclerosis risk at chromosome 9p21, Arterioscler. Thromb. Vasc. Biol., 30, 620, 10.1161/ATVBAHA.109.196832

Huang, 2018, Long noncoding RNA MALAT1 mediates cardiac fibrosis in experimental postinfarct myocardium mice model, J. Cell. Physiol., 234, 2997, 10.1002/jcp.27117

Ishii, 2006, Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction, J. Hum. Genet., 51, 1087, 10.1007/s10038-006-0070-9

Jiang, 2016, Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy, PLoS One, 11, e0152767, 10.1371/journal.pone.0152767

, 2014, Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin, Mol. Cell, 53, 290, 10.1016/j.molcel.2013.11.012

Kim, 2016, Long noncoding RNAs in diseases of aging, Biochim. Biophys. Acta, 1859, 209, 10.1016/j.bbagrm.2015.06.013

Kornfeld, 2015, Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases, Circ. Res., 116, 1783, 10.1161/CIRCRESAHA.116.305432

Kovacic, 2011, Cellular senescence, vascular disease, and aging: part 1 of a 2-part review, Circulation, 123, 1650, 10.1161/CIRCULATIONAHA.110.007021

Kovacic, 2011, Cellular senescence, vascular disease, and aging: part 2 of a 2-part review: clinical vascular disease in the elderly, Circulation, 123, 1900, 10.1161/CIRCULATIONAHA.110.009118

Kumarswamy, 2014, Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure, Circ. Res., 114, 1569, 10.1161/CIRCRESAHA.114.303915

Lai, 2017, HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy, Mol. Cell. Biochem., 432, 179, 10.1007/s11010-017-3008-y

Lakatta, 2003, Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a ‘set up’ for vascular disease, Circulation, 107, 139, 10.1161/01.CIR.0000048892.83521.58

Lakatta, 2003, Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease, Circulation, 107, 346, 10.1161/01.CIR.0000048893.62841.F7

Leri, 2003, Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation, EMBO J., 22, 131, 10.1093/emboj/cdg013

Li, 2017, Inhibition of the lncRNA Mirt1 attenuates acute myocardial infarction by suppressing NF-κB activation, Cell. Physiol. Biochem., 42, 1153, 10.1159/000478870

Ling, 2016, Comorbidity of atrial fibrillation and heart failure, Nat. Rev. Cardiol., 13, 131, 10.1038/nrcardio.2015.191

Liu, 2009, INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis, PLoS One, 4, e5027, 10.1371/journal.pone.0005027

Long, 2018, Long noncoding RNA FTX regulates cardiomyocyte apoptosis by targeting miR-29b-1-5p and Bcl2l2, Biochem. Biophys. Res. Commun., 495, 312, 10.1016/j.bbrc.2017.11.030

Lopez-Otin, 2013, The hallmarks of aging, Cell, 153, 1194, 10.1016/j.cell.2013.05.039

Lv, 2018, The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214, Mol. Ther. Nucleic Acids, 10, 387, 10.1016/j.omtn.2017.12.018

Maass, 2014, Long non-coding RNA in health and disease, J. Mol. Med., 92, 337, 10.1007/s00109-014-1131-8

Malvezzi, 2018, Relation between mortality trends of cardiovascular diseases and selected cancers in the European Union, in 1970–2017. Focus on cohort and period effects, Eur. J. Cancer, 103, 341, 10.1016/j.ejca.2018.06.018

Mao, 2011, Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs, Nat. Cell Biol., 13, 95, 10.1038/ncb2140

Mathiyalagan, 2014, Chromatin modifications remodel cardiac gene expression, Cardiovasc. Res., 103, 7, 10.1093/cvr/cvu122

Mercer, 2013, Structure and function of long noncoding RNAs in epigenetic regulation, Nat. Struct. Mol. Biol., 20, 300, 10.1038/nsmb.2480

Micheletti, 2017, The long noncoding RNA Wisper controls cardiac fibrosis and remodeling, Sci. Transl. Med., 9, 10.1126/scitranslmed.aai9118

Militello, 2018, A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1, J. Mol. Cell Biol., 10, 102, 10.1093/jmcb/mjy025

Miyata, 2000, Myosin heavy chain isoform expression in the failing and nonfailing human heart, Circ. Res., 86, 386, 10.1161/01.RES.86.4.386

Modarresi, 2012, Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation, Nat. Biotechnol., 30, 453, 10.1038/nbt.2158

Mondal, 2015, MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures, Nat. Commun., 6, 7743, 10.1038/ncomms8743

Montero, 2018, TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin, Nat. Commun., 9, 1548, 10.1038/s41467-018-03916-3

North, 2012, The intersection between aging and cardiovascular disease, Circ. Res., 110, 1097, 10.1161/CIRCRESAHA.111.246876

Okazaki, 2002, Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs, Nature, 420, 563, 10.1038/nature01266

Ong, 2011, Enhancer function: new insights into the regulation of tissue-specific gene expression, Nat. Rev. Genet., 12, 283, 10.1038/nrg2957

Ounzain, 2015, CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis, J. Mol. Cell. Cardiol., 89, 98, 10.1016/j.yjmcc.2015.09.016

Ounzain, 2015, Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs, Eur. Heart J., 36, 353, 10.1093/eurheartj/ehu180

Ounzain, 2014, Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease, J. Mol. Cell. Cardiol., 76, 55, 10.1016/j.yjmcc.2014.08.009

Owan, 2005, Epidemiology of diastolic heart failure, Prog. Cardiovasc. Dis., 47, 320, 10.1016/j.pcad.2005.02.010

Paneni, 2017, The aging cardiovascular system: understanding it at the cellular and clinical Levels, J. Am. Coll. Cardiol., 69, 1952, 10.1016/j.jacc.2017.01.064

Piccoli, 2017, Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction, Circ. Res., 121, 575, 10.1161/CIRCRESAHA.117.310624

Quinodoz, 2014, Long noncoding RNAs: an emerging link between gene regulation and nuclear organization, Trends Cell Biol., 24, 651, 10.1016/j.tcb.2014.08.009

Rapicavoli, 2013, A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics, eLife, 2, e00762, 10.7554/eLife.00762

Redfield, 2016, Heart failure with preserved ejection fraction, N. Engl. J. Med., 375, 1868, 10.1056/NEJMcp1511175

Sahin, 2011, Telomere dysfunction induces metabolic and mitochondrial compromise, Nature, 470, 359, 10.1038/nature09787

Saltzman, 2014, Arrhythmias and heart failure, Cardiol. Clin., 32, 125, 10.1016/j.ccl.2013.09.005

Schmitt, 2016, An inducible long noncoding RNA amplifies DNA damage signaling, Nat. Genet., 48, 1370, 10.1038/ng.3673

Sharifi-Sanjani, 2017, Cardiomyocyte-specific telomere shortening is a distinct signature of heart failure in humans, J. Am. Heart Assoc., 6, 10.1161/JAHA.116.005086

Shen, 2018, YY1-induced upregulation of lncRNA KCNQ1OT1 regulates angiotensin II-induced atrial fibrillation by modulating miR-384b/CACNA1C axis, Biochem. Biophys. Res. Commun., 505, 134, 10.1016/j.bbrc.2018.09.064

Staerk, 2017, Association between leukocyte telomere length and the risk of incident atrial fibrillation: the Framingham heart study, J. Am. Heart Assoc., 6, 10.1161/JAHA.117.006541

Swirski, 2009, Identification of splenic reservoir monocytes and their deployment to inflammatory sites, Science, 325, 612, 10.1126/science.1175202

Taft, 2010, Non-coding RNAs: regulators of disease, J. Pathol., 220, 126, 10.1002/path.2638

Thomson, 2016, Endogenous microRNA sponges: evidence and controversy, Nat. Rev. Genet., 17, 272, 10.1038/nrg.2016.20

Uchida, 2015, Long noncoding RNAs in cardiovascular diseases, Circ. Res., 116, 737, 10.1161/CIRCRESAHA.116.302521

Ulitsky, 2011, Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution, Cell, 147, 1537, 10.1016/j.cell.2011.11.055

Berlo, 2013, Signaling effectors underlying pathologic growth and remodeling of the heart, J. Clin. Invest., 123, 37, 10.1172/JCI62839

Vausort, 2014, Long noncoding RNAs in patients with acute myocardial infarction, Circ. Res., 115, 668, 10.1161/CIRCRESAHA.115.303836

Viereck, 2016, Long noncoding RNA Chast promotes cardiac remodeling, Sci. Transl. Med., 8, 326ra322, 10.1126/scitranslmed.aaf1475

Vigen, 2012, Aging of the United States population: impact on heart failure, Curr. Heart Fail. Rep., 9, 369, 10.1007/s11897-012-0114-8

Wang, 2015, APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p, Nat. Commun., 6, 6779, 10.1038/ncomms7779

Wang, 2016, The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873, Cell Death Differ., 23, 1394, 10.1038/cdd.2016.28

Wang, 2014, The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489, Circ. Res., 114, 1377, 10.1161/CIRCRESAHA.114.302476

Wang, 2014, CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation, Nat. Commun., 5, 3596, 10.1038/ncomms4596

Wang, 2011, Molecular mechanisms of long noncoding RNAs, Mol. Cell, 43, 904, 10.1016/j.molcel.2011.08.018

Wang, 2016, The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy, Nat. Med., 22, 1131, 10.1038/nm.4179

Wellenius, 2008, Disparities in myocardial infarction case fatality rates among the elderly: the 20-year Medicare experience, Am. Heart J., 156, 483, 10.1016/j.ahj.2008.04.009

Williams, 2002, Secondary prevention of coronary heart disease in the elderly (with emphasis on patients > or =75 years of age): an American Heart Association scientific statement from the council on clinical cardiology subcommittee on exercise, cardiac rehabilitation, and prevention, Circulation, 105, 1735, 10.1161/01.CIR.0000013074.73995.6C

Wu, 2018, Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction, Gene Ther., 25, 511, 10.1038/s41434-018-0045-4

Wu, 2017, Knockdown of Long non-coding RNA-ZFAS1 protects cardiomyocytes against acute myocardial infarction via anti-apoptosis by regulating miR-150/CRP, J. Cell. Biochem., 118, 3281, 10.1002/jcb.25979

Xuan, 2017, Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure, J. Cell. Mol. Med., 21, 1803, 10.1111/jcmm.13101

Yang, 2018, LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy, Cell. Physiol. Biochem., 50, 1230, 10.1159/000494576

Yari, 2018, Association between Long noncoding RNA ANRIL expression variants and susceptibility to coronary artery disease, Int. J. Mol. Cell. Med., 7, 1

Zangrando, 2014, Identification of candidate long non-coding RNAs in response to myocardial infarction, BMC Genomics, 15, 460, 10.1186/1471-2164-15-460

Zhao, 2017, Inhibition of long noncoding RNA BDNF-AS rescues cell death and apoptosis in hypoxia/reoxygenation damaged murine cardiomyocyte, Biochimie, 138, 43, 10.1016/j.biochi.2017.03.018