Long- and short-range orders in 10-component compositionally complex ceramics
Tài liệu tham khảo
Ding, 2014, Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci., 7, 552, 10.1039/c3ee42926a
Mahato, 2015, Progress in material selection for solid oxide fuel cell technology: a review, Prog. Mater. Sci., 72, 141, 10.1016/j.pmatsci.2015.01.001
Andrievskaya, 2008, Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides, J. Eur. Ceram. Soc., 28, 2363, 10.1016/j.jeurceramsoc.2008.01.009
Ponnilavan, 2019, Titanium substitution in Gd2Zr2O7 for thermal barrier coating applications, Ceram. Int., 45, 16450, 10.1016/j.ceramint.2019.05.176
Chen, 2016, Thermal conductivity and expansion coefficient of Ln2LaTaO7 (Ln=Er and Yb) oxides for thermal barrier coating applications, Ceram. Int., 42, 13491, 10.1016/j.ceramint.2016.05.141
Shamblin, 2016, Probing disorder in isometric pyrochlore and related complex oxides, Nat. Mater., 15, 507, 10.1038/nmat4581
Sickafus, 2007, Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides, Nat. Mater., 6, 217, 10.1038/nmat1842
Sickafus, 2000, Radiation tolerance of complex oxides, Science, 289, 748, 10.1126/science.289.5480.748
Zhang, 2013, Gradual structural evolution from pyrochlore to defect-fluorite in Y2Sn2-xZrxO7: average vs local structure, J. Phys. Chem. C, 117, 26740, 10.1021/jp408682r
Maram, 2018, Probing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids-A thermodynamic perspective, Sci. Rep., 8, 1, 10.1038/s41598-018-28877-x
Zhou, 2016, Thermal-driven fluorite-pyrochlore-fluorite phase transitions of Gd2Zr2O7 ceramics probed in large range of sintering temperature, Metall. Mater. Trans. A, 47, 623, 10.1007/s11661-015-3234-4
O'Quinn, 2021, Multi-scale investigation of heterogeneous swift heavy ion tracks in stannate pyrochlore, J. Mater. Chem. A., 9, 16982, 10.1039/D1TA04924K
Karthik, 2012, Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates, J. Solid State Chem., 194, 168, 10.1016/j.jssc.2012.05.008
Blanchard, 2012, Does local disorder occur in the pyrochlore zirconates?, Inorg. Chem., 51, 13237, 10.1021/ic301677b
Shafique, 2016, The effect of B-site substitution on structural transformation and ionic conductivity in Ho2(ZryTi1-y)2O2, J. Alloys Compd., 671, 226, 10.1016/j.jallcom.2016.02.087
Norberg, 2012, Pyrochlore to fluorite transition: the Y2(Ti1-xZrx)2O7 (0.0 ≥x ≥1.0) System, Chem. Mater., 24, 4294, 10.1021/cm301649d
Clements, 2011, The fluorite-pyrochlore transformation of Ho2-yNdyZr2O2, J. Solid State Chem., 184, 2108, 10.1016/j.jssc.2011.05.054
Shamblin, 2018, Similar local order in disordered fluorite and aperiodic pyrochlore structures, Acta Mater., 144, 60, 10.1016/j.actamat.2017.10.044
Sherrod, 2021, Comparison of short-range order in irradiated dysprosium titanates, Npj Mater. Degrad., 5, 1, 10.1038/s41529-021-00165-6
Drey, 2020, Disorder in Ho2Ti2-xZrxO7: pyrochlore to defect fluorite solid solution series, RSC Adv., 10, 34632, 10.1039/D0RA07118H
Hong, 2019, Microstructural evolution and mechanical properties of (Mg, Co, Ni, Cu, Zn) O high-entropy ceramics, J. Am. Ceram. Soc., 102, 2228, 10.1111/jace.16075
Zhou, 2022, High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide, Chem. Eng. J., 427, 10.1016/j.cej.2021.131684
Yang, 2021, A high-entropy perovskite cathode for solid oxide fuel cells, J. Alloys Compd., 872, 10.1016/j.jallcom.2021.159633
Gild, 2018, High-entropy fluorite oxides, J. Eur. Ceram. Soc., 38, 3578, 10.1016/j.jeurceramsoc.2018.04.010
Wright, 2022, Short-range order and origin of the low thermal conductivity in compositionally complex rare-earth niobates and tantalates, Acta Mater., 235, 10.1016/j.actamat.2022.118056
Zhu, 2021, Ultra-low thermal conductivity and enhanced mechanical properties of high-entropy rare earth niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb), J. Eur. Ceram. Soc., 41, 1052, 10.1016/j.jeurceramsoc.2020.08.070
Zhao, 2020, High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications, J. Adv. Ceram., 9, 303, 10.1007/s40145-020-0368-7
Wright, 2020, From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides, J. Eur. Ceram. Soc., 40, 2120, 10.1016/j.jeurceramsoc.2020.01.015
Wright, 2021, Sand corrosion, thermal expansion, and ablation of medium- and high-entropy compositionally complex fluorite oxides, J. Am. Ceram. Soc., 104, 448, 10.1111/jace.17448
Zhang, 2020, Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder, J. Alloys Compd., 817, 10.1016/j.jallcom.2019.153328
Teng, 2019, Synthesis and structures of high-entropy pyrochlore oxides, J. Eur. Ceram. Soc.
Qin, 2022, 21-Component compositionally complex ceramics: discovery of ultrahigh-entropy weberite and fergusonite phases and a pyrochlore-weberite transition, J. Adv. Ceram., 11, 641, 10.1007/s40145-022-0575-5
Dąbrowa, 2018, Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure, Mater. Lett., 216, 32, 10.1016/j.matlet.2017.12.148
Gild, 2016, High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics, Sci. Rep., 6, 10.1038/srep37946
Qin, 2020, High-entropy monoborides: towards superhard materials, Scripta Mater., 189, 101, 10.1016/j.scriptamat.2020.08.018
Qin, 2021, High-entropy rare earth tetraborides, J. Eur. Ceram. Soc., 41, 2968, 10.1016/j.jeurceramsoc.2020.12.019
Qin, 2021, A new class of high-entropy M3B4 borides, J. Adv. Ceram., 10, 166, 10.1007/s40145-020-0438-x
Qin, 2021, Bulk high-entropy hexaborides, J. Eur. Ceram. Soc., 41, 5775, 10.1016/j.jeurceramsoc.2021.05.027
Castle, 2018, Processing and properties of high-entropy ultra-high temperature carbides, Sci. Rep., 8, 8609, 10.1038/s41598-018-26827-1
Harrington, 2019, Phase stability and mechanical properties of novel high entropy transition metal carbides, Acta Mater., 166, 271, 10.1016/j.actamat.2018.12.054
Yan, 2018, Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity, J. Am. Ceram. Soc., 101, 4486, 10.1111/jace.15779
Gild, 2019, A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2, J. Mater.
Qin, 2019, A high entropy silicide by reactive spark plasma sintering, J. Adv. Ceram., 8, 148, 10.1007/s40145-019-0319-3
Dippo, 2020, Bulk high-entropy nitrides and carbonitrides, Sci. Rep., 10, 10.1038/s41598-020-78175-8
Moskovskikh, 2020, Extremely hard and tough high entropy nitride ceramics, Sci. Rep., 10, 1, 10.1038/s41598-020-76945-y
Chen, 2019, High-entropy transparent fluoride laser ceramics, J. Am. Ceram. Soc., 103, 750, 10.1111/jace.16842
Wright, 2020, A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective, J. Mater. Sci., 55, 8812, 10.1007/s10853-020-04583-w
Xiang, 2021, High-entropy ceramics: present status, challenges, and a look forward, J. Adv. Ceram., 10, 385, 10.1007/s40145-021-0477-y
Wright, 2020, From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides, J. Eur. Ceram. Soc., 10.1016/j.jeurceramsoc.2020.01.015
Shivakumar, 2022, A new type of compositionally complex M5Si3 silicides: cation ordering and unexpected phase stability, Scripta Mater., 212, 10.1016/j.scriptamat.2022.114557
Wright, 2021, Single-phase duodenary high-entropy fluorite/pyrochlore oxides with an order-disorder transition, Acta Mater., 211, 10.1016/j.actamat.2021.116858
Zhang, 2022, Discovery of a reversible redox-induced order-disorder transition in a 10-component compositionally complex ceramic, Scripta Mater., 215, 10.1016/j.scriptamat.2022.114699
Jiang, 2021, Probing the local site disorder and distortion in pyrochlore high-entropy oxides, J. Am. Chem. Soc., 143, 4193, 10.1021/jacs.0c10739
An, 2019, VULCAN: a “hammer” for high-temperature materials research, MRS Bull., 44, 878, 10.1557/mrs.2019.256
Rice, 1998
Miracle, 2017, A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448, 10.1016/j.actamat.2016.08.081
Yeh, 2013, Alloy design strategies and future trends in high-entropy alloys, JOM (J. Occup. Med.), 65, 1759
Zhang, 2014, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001
Heremans, 1995, Fast-ion conducting Y2(ZryTi1-y)2O7 pyrochlores: neutron Rietveld analysis of disorder induced by Zr substitution, J. Solid State Chem., 117, 108, 10.1006/jssc.1995.1253
Fuentes, 2018, A critical review of existing criteria for the prediction of pyrochlore formation and stability, Inorg. Chem., 57, 12093, 10.1021/acs.inorgchem.8b01665
Reynolds, 2012, Structural and spectroscopic studies of La2Ce2O7: disordered fluorite versus pyrochlore structure, Phys. Rev. B Condens. Matter, 85, 1, 10.1103/PhysRevB.85.132101
Kocevski, 2021, Modeling disorder in pyrochlores and other anion-deficient fluorite structural derivative oxides, Front. Chem., 9, 1, 10.3389/fchem.2021.712543
Farrow, 2007, PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals, J. Phys. Condens. Matter, 19, 10.1088/0953-8984/19/33/335219
Pilania, 2019, Distortion-stabilized ordered structures in A2BB’O7 mixed pyrochlores, Npj Comput. Mater., 5, 1, 10.1038/s41524-018-0144-1
O'Quinn, 2020, Predicting short-range order and correlated phenomena in disordered crystalline materials, Sci. Adv., 6
Drey, 2021, Local ordering in disordered NdxZr1-xO2-0.5x pyrochlore as observed using neutron total scattering, Acta Mater., 225
Marlton, 2021, Lattice disorder and oxygen migration pathways in pyrochlore and defect-fluorite oxides, Chem. Mater., 33, 1407, 10.1021/acs.chemmater.0c04515
Il Kim, 2015, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics, Science, 80, 109, 10.1126/science.aaa4166