Long- and short-range orders in 10-component compositionally complex ceramics

Advanced Powder Materials - Tập 2 - Trang 100098 - 2023
Dawei Zhang1,2, Yan Chen2, Heidy Vega3, Tianshi Feng4, Dunji Yu2, Michelle Everett2, Joerg Neuefeind2, Ke An2, Renkun Chen1,4, Jian Luo1,5
1Program of Materials Science and Engineering, University of California San Diego, La Jolla 92093, USA
2Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge 38731, USA
3Department of Biochemistry and Chemistry, University of California San Diego, La Jolla 92093, USA
4Department of Mechanical & Aerospace Engineering, University of California San Diego, La Jolla 92093, USA
5Department of Nanoengineering, University of California San Diego, La Jolla, 92093, USA

Tài liệu tham khảo

Ding, 2014, Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci., 7, 552, 10.1039/c3ee42926a Mahato, 2015, Progress in material selection for solid oxide fuel cell technology: a review, Prog. Mater. Sci., 72, 141, 10.1016/j.pmatsci.2015.01.001 Andrievskaya, 2008, Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides, J. Eur. Ceram. Soc., 28, 2363, 10.1016/j.jeurceramsoc.2008.01.009 Ponnilavan, 2019, Titanium substitution in Gd2Zr2O7 for thermal barrier coating applications, Ceram. Int., 45, 16450, 10.1016/j.ceramint.2019.05.176 Chen, 2016, Thermal conductivity and expansion coefficient of Ln2LaTaO7 (Ln=Er and Yb) oxides for thermal barrier coating applications, Ceram. Int., 42, 13491, 10.1016/j.ceramint.2016.05.141 Shamblin, 2016, Probing disorder in isometric pyrochlore and related complex oxides, Nat. Mater., 15, 507, 10.1038/nmat4581 Sickafus, 2007, Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides, Nat. Mater., 6, 217, 10.1038/nmat1842 Sickafus, 2000, Radiation tolerance of complex oxides, Science, 289, 748, 10.1126/science.289.5480.748 Zhang, 2013, Gradual structural evolution from pyrochlore to defect-fluorite in Y2Sn2-xZrxO7: average vs local structure, J. Phys. Chem. C, 117, 26740, 10.1021/jp408682r Maram, 2018, Probing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids-A thermodynamic perspective, Sci. Rep., 8, 1, 10.1038/s41598-018-28877-x Zhou, 2016, Thermal-driven fluorite-pyrochlore-fluorite phase transitions of Gd2Zr2O7 ceramics probed in large range of sintering temperature, Metall. Mater. Trans. A, 47, 623, 10.1007/s11661-015-3234-4 O'Quinn, 2021, Multi-scale investigation of heterogeneous swift heavy ion tracks in stannate pyrochlore, J. Mater. Chem. A., 9, 16982, 10.1039/D1TA04924K Karthik, 2012, Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates, J. Solid State Chem., 194, 168, 10.1016/j.jssc.2012.05.008 Blanchard, 2012, Does local disorder occur in the pyrochlore zirconates?, Inorg. Chem., 51, 13237, 10.1021/ic301677b Shafique, 2016, The effect of B-site substitution on structural transformation and ionic conductivity in Ho2(ZryTi1-y)2O2, J. Alloys Compd., 671, 226, 10.1016/j.jallcom.2016.02.087 Norberg, 2012, Pyrochlore to fluorite transition: the Y2(Ti1-xZrx)2O7 (0.0 ≥x ≥1.0) System, Chem. Mater., 24, 4294, 10.1021/cm301649d Clements, 2011, The fluorite-pyrochlore transformation of Ho2-yNdyZr2O2, J. Solid State Chem., 184, 2108, 10.1016/j.jssc.2011.05.054 Shamblin, 2018, Similar local order in disordered fluorite and aperiodic pyrochlore structures, Acta Mater., 144, 60, 10.1016/j.actamat.2017.10.044 Sherrod, 2021, Comparison of short-range order in irradiated dysprosium titanates, Npj Mater. Degrad., 5, 1, 10.1038/s41529-021-00165-6 Drey, 2020, Disorder in Ho2Ti2-xZrxO7: pyrochlore to defect fluorite solid solution series, RSC Adv., 10, 34632, 10.1039/D0RA07118H Hong, 2019, Microstructural evolution and mechanical properties of (Mg, Co, Ni, Cu, Zn) O high-entropy ceramics, J. Am. Ceram. Soc., 102, 2228, 10.1111/jace.16075 Zhou, 2022, High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide, Chem. Eng. J., 427, 10.1016/j.cej.2021.131684 Yang, 2021, A high-entropy perovskite cathode for solid oxide fuel cells, J. Alloys Compd., 872, 10.1016/j.jallcom.2021.159633 Gild, 2018, High-entropy fluorite oxides, J. Eur. Ceram. Soc., 38, 3578, 10.1016/j.jeurceramsoc.2018.04.010 Wright, 2022, Short-range order and origin of the low thermal conductivity in compositionally complex rare-earth niobates and tantalates, Acta Mater., 235, 10.1016/j.actamat.2022.118056 Zhu, 2021, Ultra-low thermal conductivity and enhanced mechanical properties of high-entropy rare earth niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb), J. Eur. Ceram. Soc., 41, 1052, 10.1016/j.jeurceramsoc.2020.08.070 Zhao, 2020, High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications, J. Adv. Ceram., 9, 303, 10.1007/s40145-020-0368-7 Wright, 2020, From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides, J. Eur. Ceram. Soc., 40, 2120, 10.1016/j.jeurceramsoc.2020.01.015 Wright, 2021, Sand corrosion, thermal expansion, and ablation of medium- and high-entropy compositionally complex fluorite oxides, J. Am. Ceram. Soc., 104, 448, 10.1111/jace.17448 Zhang, 2020, Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder, J. Alloys Compd., 817, 10.1016/j.jallcom.2019.153328 Teng, 2019, Synthesis and structures of high-entropy pyrochlore oxides, J. Eur. Ceram. Soc. Qin, 2022, 21-Component compositionally complex ceramics: discovery of ultrahigh-entropy weberite and fergusonite phases and a pyrochlore-weberite transition, J. Adv. Ceram., 11, 641, 10.1007/s40145-022-0575-5 Dąbrowa, 2018, Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure, Mater. Lett., 216, 32, 10.1016/j.matlet.2017.12.148 Gild, 2016, High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics, Sci. Rep., 6, 10.1038/srep37946 Qin, 2020, High-entropy monoborides: towards superhard materials, Scripta Mater., 189, 101, 10.1016/j.scriptamat.2020.08.018 Qin, 2021, High-entropy rare earth tetraborides, J. Eur. Ceram. Soc., 41, 2968, 10.1016/j.jeurceramsoc.2020.12.019 Qin, 2021, A new class of high-entropy M3B4 borides, J. Adv. Ceram., 10, 166, 10.1007/s40145-020-0438-x Qin, 2021, Bulk high-entropy hexaborides, J. Eur. Ceram. Soc., 41, 5775, 10.1016/j.jeurceramsoc.2021.05.027 Castle, 2018, Processing and properties of high-entropy ultra-high temperature carbides, Sci. Rep., 8, 8609, 10.1038/s41598-018-26827-1 Harrington, 2019, Phase stability and mechanical properties of novel high entropy transition metal carbides, Acta Mater., 166, 271, 10.1016/j.actamat.2018.12.054 Yan, 2018, Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity, J. Am. Ceram. Soc., 101, 4486, 10.1111/jace.15779 Gild, 2019, A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2, J. Mater. Qin, 2019, A high entropy silicide by reactive spark plasma sintering, J. Adv. Ceram., 8, 148, 10.1007/s40145-019-0319-3 Dippo, 2020, Bulk high-entropy nitrides and carbonitrides, Sci. Rep., 10, 10.1038/s41598-020-78175-8 Moskovskikh, 2020, Extremely hard and tough high entropy nitride ceramics, Sci. Rep., 10, 1, 10.1038/s41598-020-76945-y Chen, 2019, High-entropy transparent fluoride laser ceramics, J. Am. Ceram. Soc., 103, 750, 10.1111/jace.16842 Wright, 2020, A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective, J. Mater. Sci., 55, 8812, 10.1007/s10853-020-04583-w Xiang, 2021, High-entropy ceramics: present status, challenges, and a look forward, J. Adv. Ceram., 10, 385, 10.1007/s40145-021-0477-y Wright, 2020, From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides, J. Eur. Ceram. Soc., 10.1016/j.jeurceramsoc.2020.01.015 Shivakumar, 2022, A new type of compositionally complex M5Si3 silicides: cation ordering and unexpected phase stability, Scripta Mater., 212, 10.1016/j.scriptamat.2022.114557 Wright, 2021, Single-phase duodenary high-entropy fluorite/pyrochlore oxides with an order-disorder transition, Acta Mater., 211, 10.1016/j.actamat.2021.116858 Zhang, 2022, Discovery of a reversible redox-induced order-disorder transition in a 10-component compositionally complex ceramic, Scripta Mater., 215, 10.1016/j.scriptamat.2022.114699 Jiang, 2021, Probing the local site disorder and distortion in pyrochlore high-entropy oxides, J. Am. Chem. Soc., 143, 4193, 10.1021/jacs.0c10739 An, 2019, VULCAN: a “hammer” for high-temperature materials research, MRS Bull., 44, 878, 10.1557/mrs.2019.256 Rice, 1998 Miracle, 2017, A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448, 10.1016/j.actamat.2016.08.081 Yeh, 2013, Alloy design strategies and future trends in high-entropy alloys, JOM (J. Occup. Med.), 65, 1759 Zhang, 2014, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001 Heremans, 1995, Fast-ion conducting Y2(ZryTi1-y)2O7 pyrochlores: neutron Rietveld analysis of disorder induced by Zr substitution, J. Solid State Chem., 117, 108, 10.1006/jssc.1995.1253 Fuentes, 2018, A critical review of existing criteria for the prediction of pyrochlore formation and stability, Inorg. Chem., 57, 12093, 10.1021/acs.inorgchem.8b01665 Reynolds, 2012, Structural and spectroscopic studies of La2Ce2O7: disordered fluorite versus pyrochlore structure, Phys. Rev. B Condens. Matter, 85, 1, 10.1103/PhysRevB.85.132101 Kocevski, 2021, Modeling disorder in pyrochlores and other anion-deficient fluorite structural derivative oxides, Front. Chem., 9, 1, 10.3389/fchem.2021.712543 Farrow, 2007, PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals, J. Phys. Condens. Matter, 19, 10.1088/0953-8984/19/33/335219 Pilania, 2019, Distortion-stabilized ordered structures in A2BB’O7 mixed pyrochlores, Npj Comput. Mater., 5, 1, 10.1038/s41524-018-0144-1 O'Quinn, 2020, Predicting short-range order and correlated phenomena in disordered crystalline materials, Sci. Adv., 6 Drey, 2021, Local ordering in disordered NdxZr1-xO2-0.5x pyrochlore as observed using neutron total scattering, Acta Mater., 225 Marlton, 2021, Lattice disorder and oxygen migration pathways in pyrochlore and defect-fluorite oxides, Chem. Mater., 33, 1407, 10.1021/acs.chemmater.0c04515 Il Kim, 2015, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics, Science, 80, 109, 10.1126/science.aaa4166