Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hoạt động kháng khuẩn lâu dài trên vải cotton
Tóm tắt
Vải cotton là một loại vải tự nhiên phổ biến. Sợi trong vải cotton là các polyme được tạo thành từ hàng ngàn dư lượng glucose được liên kết bởi các liên kết glycosidic. Vải cotton có tính thẩm thấu không khí tốt và độ mềm mại thoải mái, điều này trở thành một nhu cầu trong cuộc sống. Tuy nhiên, bề mặt của vải cotton chứa các nhóm ưa nước như nhóm hydroxyl có thể hấp thụ độ ẩm. Khi con người mặc vải cotton, nó dễ dàng hấp thụ độ ẩm và sinh ra vi khuẩn, điều này làm giảm hiệu suất của vải. Do đó, cần thiết phải tiến hành điều trị kháng khuẩn lâu dài cho vải cotton, nhằm mở rộng phạm vi ứng dụng và kéo dài tuổi thọ của vải ở một mức độ nhất định. Dựa trên quan điểm này, bài báo tóm tắt việc xây dựng bề mặt kháng khuẩn lâu dài cho vải cotton bằng các vật liệu kháng khuẩn đa dạng với nhiều cách thức hoạt động khác nhau, để vải cotton có triển vọng tốt hơn.
Từ khóa
#vải cotton #hoạt động kháng khuẩn #vật liệu kháng khuẩn #bề mặt kháng khuẩn #ứng dụng vảiTài liệu tham khảo
Aladpoosh R, Montazer M (2016) Nano-photo active cellulosic fabric through in situ phytosynthesis of star-like Ag/ZnO nanocomposites: investigation and optimization of attributes associated with photocatalytic activity. Carbohydr Polym 141:116–125. https://doi.org/10.1016/j.carbpol.2016.01.005
Anita S, Ramachandran T, Rajendran R, Koushik CV, Mahalakshmi M (2011) A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Text Res J 81(10):1081–1088. https://doi.org/10.1177/0040517510397577
Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO Due to increased ROS-mediated cell injury. Adv Funct Mater 19(6):842–852. https://doi.org/10.1002/adfm.200801081
Attia NF, Morsy MS (2016) Facile synthesis of novel nanocomposite as antibacterial and flame retardant material for textile fabrics. Mater Chem Phys 180:364–372. https://doi.org/10.1016/j.matchemphys.2016.06.019
Bacciarelli-Ulacha A, Rybicki E, Matyjas-Zgondek E, Pawlaczyk A, Szynkowska MI (2014) A new method of finishing of cotton fabric by in situ synthesis of silver nanoparticles. Ind Eng Chem Res 53(11):4147–4155. https://doi.org/10.1021/ie4011113
Baghriche O, Ruales C, Sanjines R, Pulgarin C, Zertal A, Stolitchnov I, Kiwi J (2012) Ag-surfaces sputtered by DC and pulsed DC-magnetron sputtering effective in bacterial inactivation: testing and characterization. Surf Coat Tech 206(8–9):2410–2416. https://doi.org/10.1016/j.surfcoat.2011.10.041
Bastarrachea LJ, Goddard JM (2015) Antimicrobial coatings with dual cationic and N-Halamine character: characterization and biocidal efficacy. J Agric Food Chem 63(16):4243–4251. https://doi.org/10.1021/acs.jafc.5b00445
Budama L, Cakir BA, Topel O, Hoda N (2013) A new strategy for producing antibacterial textile surfaces using silver nanoparticles. Chem Eng J 228:489–495. https://doi.org/10.1016/j.cej.2013.05.018
Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds-a critical review. Int J Antimicrob Ag 39(5):381–389. https://doi.org/10.1016/j.ijantimicag.2012.01.011
Cao Y, Gu J, Wang S, Zhang Z, Yu H, Li J, Chen S (2020) Guanidine-functionalized cotton fabrics for achieving permanent antibacterial activity without compromising their physicochemical properties and cytocompatibility. Cellulose 27(10):6027–6036. https://doi.org/10.1007/s10570-020-03137-2
Chakrabarti S, Banerjee P (2015) Preparation and characterization of multifunctional cotton fabric by coating with sonochemically synthesized zinc oxide nanoparticle-flakes and a novel approach to monitor its self-cleaning property. J Text I 106(9):963–969. https://doi.org/10.1080/00405000.2014.955962
Chen S, Chen S, Jiang S, Xiong M, Luo J, Tang J, Ge Z (2011) Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine. Acs Appl Mater Inter 3(4):1154–1162. https://doi.org/10.1021/am101275d
Chen S, Guo Y, Chen S, Ge Z, Yang H, Tang J (2012) Fabrication of Cu/TiO2 nanocomposite: toward an enhanced antibacterial performance in the absence of light. Mater Lett 83:154–157. https://doi.org/10.1016/j.matlet.2012.06.007
Chen S, Chen J, Li L, Hu P, Chen S, Huang M (2014a) An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy. J Lumin 152:103–107. https://doi.org/10.1016/j.jlumin.2013.10.067
Chen S, Guo Y, Zhong H, Chen S, Li J, Ge Z, Tang J (2014b) Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles. Chem Eng J 256:238–246. https://doi.org/10.1016/j.cej.2014.07.006
Chen S, Yuan L, Li Q, Li J, Zhu X, Jiang Y, Sha O, Yang X, Xin JH, Wang J, Stadler FJ, Huang P (2016a) Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating. Small 12(26):3516–3521. https://doi.org/10.1002/smll.201600587
Chen Y, Li J, Li Q, Shen Y, Ge Z, Zhang W, Chen S (2016b) Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydr Polym 143:246–253. https://doi.org/10.1016/j.carbpol.2016.01.073
Chen J, Wang W, Hu P, Wang D, Lin F, Xue J, Chen Z, Iqbal Z, Huang M (2017) Dual antimicrobial actions on modified fabric leads to inactivation of drug-resistant bacteria. Dyes Pigments 140:236–243. https://doi.org/10.1016/j.dyepig.2017.01.032
Dastjerdi R, Montazer M, Shahsavan S (2009) A new method to stabilize nanoparticles on textile surfaces. Colloids Surface A 345(1–3):202–210. https://doi.org/10.1016/j.colsurfa.2009.05.007
De S, Khan A (2012) Efficient synthesis of multifunctional polymers via thiol-epoxy “click” chemistry. Chem Commun 48(25):3130–3132. https://doi.org/10.1039/c2cc30434a
Dhiman G, Chakraborty JN (2015) Antimicrobial performance of cotton finished with triclosan, silver and chitosan. Fash Text 2(1):1–14. https://doi.org/10.1186/s40691-015-0040-y
Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mat Sci Eng C-Mater 44:278–284. https://doi.org/10.1016/j.msec.2014.08.031
Dizman B, Elasri MO, Mathias LJ (2004) Synthesis and antimicrobial activities of new water-soluble bis-quaternary ammonium methacrylate polymers. J Appl Polym Sci 94(2):635–642. https://doi.org/10.1002/app.20872
Dong A, Wang YJ, Gao Y, Gao T, Gao G (2017) Chemical insights into antibacterial N-halamines. Chem Rev 117(6):4806–4862. https://doi.org/10.1021/acs.chemrev.6b00687
Dou Q, Fang X, Jiang S, Chee PL, Lee TC, Loh XJ (2015) Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. Rsc Adv 5(58):46817–46822. https://doi.org/10.1039/c5ra07968c
El Hage S, Lajoie B, Stigliani JL, Furiga-Chusseau A, Roques C, Baziard G (2014) Synthesis, antimicrobial activity and physico-chemical properties of some n-alkyldimethylbenzylammonium halides. J Appl Biomed 12(4):245–253. https://doi.org/10.1016/j.jab.2014.02.002
El-Naggar ME, Shaheen TI, Zaghloul S, El-Rafie MH, Hebeish A (2016) Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics. Ind Eng Chem Res 55(10):2661–2668. https://doi.org/10.1021/acs.iecr.5b04315
El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18(1):75–82. https://doi.org/10.1007/s10570-010-9455-1
Emam HE, Bechtold T (2015) Cotton fabrics with UV blocking properties through metal salts deposition. Appl Surf Sci 357:1878–1889. https://doi.org/10.1016/j.apsusc.2015.09.095
Emam HE, Saleh NH, Nagy KS, Zahran MK (2015) Functionalization of medical cotton by direct incorporation of silver nanoparticles. Int J Biol Macromol 78:249–256. https://doi.org/10.1016/j.ijbiomac.2015.04.018
Fiss EM, Rule KL, Vikesland PJ (2007) Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environ Sci Technol 41(7):2387–2394. https://doi.org/10.1021/es062227l
Gabriel GJ, Madkour AE, Dabkowski JM, Nelson CF, Nusslein K, Tew GN (2008) Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties. Biomacromol 9(11):2980–2983. https://doi.org/10.1021/bm800855t
Galkina OL, Sycheva A, Blagodatskiy A, Kaptay G, Katanaev VL, Seisenbaeva GA, Kessler VG, Agafonov AV (2014) The sol-gel synthesis of cotton/TiO2 composites and their antibacterial properties. Surf Coat Tech 253:171–179. https://doi.org/10.1016/j.surfcoat.2014.05.033
Gao D, Chen C, Ma J, Duan X, Zhang J (2014) Preparation, characterization and antibacterial functionalization of cotton fabric using dimethyl diallyl ammonium chloride-allyl glycidyl ether-methacrylic/nano-ZnO composite. Chem Eng J 258:85–92. https://doi.org/10.1016/j.cej.2014.07.072
Gao D, Duan X, Chen C, Lyu B, Ma J (2015) Synthesis of polymer quaternary ammonium salt containing epoxy group/nano ZnO long-acting antimicrobial coating for cotton fabrics. Ind Eng Chem Res 54(43):10560–10567. https://doi.org/10.1021/acs.iecr.5b02509
Gao D, Lyu L, Lyu B, Ma J, Yang L, Zhang J (2017) Multifunctional cotton fabric loaded with Ce doped ZnO nanorods. Mater Res Bull 89:102–107. https://doi.org/10.1016/j.materresbull.2017.01.030
Gao D, Zhang J, Lyu B, Lyu L, Ma J, Yang L (2018) Poly(quaternary ammonium salt-epoxy) grafted onto Ce doped ZnO composite: an enhanced and durable antibacterial agent. Carbohydr Polym 200:221–228. https://doi.org/10.1016/j.carbpol.2018.07.073
Gao D, Li Y, Lyu B, Lyu L, Chen S, Ma J (2019) Construction of durable antibacterial and anti-mildew cotton fabric based on P(DMDAAC-AGE)/Ag/ZnO composites. Carbohydr Polym 204:161–169. https://doi.org/10.1016/j.carbpol.2018.09.087
Gu J, Yuan L, Zhang Z, Yang X, Luo J, Gui Z, Chen S (2018) Non-leaching bactericidal cotton fabrics with well-preserved physical properties, no skin irritation and no toxicity. Cellulose 25(9):5415–5426. https://doi.org/10.1007/s10570-018-1943-8
Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, Ruiz de Larramendi I, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511. https://doi.org/10.1016/j.tibtech.2012.06.004
He L, Gao C, Li S, Chung CTW, Xin JH (2017) Non-leaching and durable antibacterial textiles finished with reactive zwitterionic sulfobetaine. J Ind Eng Chem 46:373–378. https://doi.org/10.1016/j.jiec.2016.11.006
Hu Y, Wang W, Yu D (2016) Functional modification of wool fabric by thiol-epoxy click chemistry. Fiber Polym 17(1):30–35. https://doi.org/10.1007/s12221-016-5770-y
Ibrahim NA, Khalil HM, El-Zairy EMR, Abdalla WA (2013) Smart options for simultaneous functionalization and pigment coloration of cellulosic/wool blends. Carbohydr Polym 96(1):200–210. https://doi.org/10.1016/j.carbpol.2013.03.084
Jang YS, Amna T, Hassan MS, Kim HC, Kim JH, Baik SH, Khil MS (2015) Nanotitania/mulberry fibers as novel textile with anti-yellowing and intrinsic antimicrobial properties. Ceram Int 41(5):6274–6280. https://doi.org/10.1016/j.ceramint.2015.01.050
Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y (2013) Antifouling and Antimicrobial Polymer Membranes Based on Bioinspired Polydopamine and Strong Hydrogen-Bonded Poly(N-vinyl pyrrolidone). Acs Appl Mater Inter 5(24):12895–12904. https://doi.org/10.1021/am403405c
Jiang SX, Peng L, Wang Y, Shang S, Miao D, Guo R (2019) AgNps-PVA-coated woven cotton fabric: preparation, water repellency, shielding properties and antibacterial activity. J Ind Text 48(10):1545–1565. https://doi.org/10.1177/1528083718764908
Kamalipour J, Masoomi M, Khonakdar HA, Razavi SMR (2016) Preparation and release study of Triclosan in polyethylene/Triclosan anti-bacterial blend. Colloids Surface B 145:891–898. https://doi.org/10.1016/j.colsurfb.2016.05.093
Kocer HB, Worley SD, Broughton RM, Huang TS (2011) A novel N-halamine acrylamide monomer and its copolymers for antimicrobial coatings. React Funct Polym 71(5):561–568. https://doi.org/10.1016/j.reactfunctpolym.2011.02.002
Kono H, Fujita S (2012) Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride. Carbohydr Polym 87(4):2582–2588. https://doi.org/10.1016/j.carbpol.2011.11.045
Kurajica S, Ocko T, Mandic V, Kurajica VC, Lozic I (2012) Properties and antimicrobial activity of nanosilver deposited cotton fabric coated with γ-methacryloxypropyl Trimethoxysilane. J Nano Res-Sw 20:77–88. https://doi.org/10.4028/www.scientific.net/JNanoR.20.77
Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430. https://doi.org/10.1126/science.1147241
Lee SY, Kim SH, Hong CY, Park MJ, Choi IG (2013) Effects of (-)-borneol on the growth and morphology of Aspergillus fumigatus and Epidermophyton floccosom. Flavour Frag J 28(2):129–134. https://doi.org/10.1002/ffj.3138
Li J, Sha Z, Zhang W, Tao F, Yang P (2016) Preparation and antibacterial properties of gelatin grafted with an epoxy silicone quaternary ammonium salt. J Biomat Sci-Polym E 27(10):1017–1028. https://doi.org/10.1080/09205063.2016.1175784
Lu Z, Mao C, Meng M, Liu S, Tian Y, Yu L, Sun B, Li CM (2014) Fabrication of CeO2 nanoparticle-modified silk for UV protection and antibacterial applications. J Colloid Interface Sci 435:8–14. https://doi.org/10.1016/j.jcis.2014.08.015
Luo L, Li G, Luan D, Yuan Q, Wei Y, Wang X (2014) Antibacterial adhesion of borneol-based polymer via surface chiral stereochemistry. ACS Appl Mater Int 6(21):19371–19377. https://doi.org/10.1021/am505481q
Luo G, Xi G, Wang X, Qin D, Zhang Y, Fu F, Liu X (2017) Antibacterial N-halamine coating on cotton fabric fabricated using mist polymerization. J Appl Polym Sci 134(22):1. https://doi.org/10.1002/app.44897
Maryan AS, Montazer M, Harifi T (2015) Synthesis of nano silver on cellulosic denim fabric producing yellow colored garment with antibacterial properties. Carbohydr Polym 115:568–574. https://doi.org/10.1016/j.carbpol.2014.08.100
Moezzi A, McDonagh AM, Cortie MB (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185:1–22. https://doi.org/10.1016/j.cej.2012.01.076
Mohamed AL, El-Sheikh MA, Waly AI (2014) Enhancement of flame retardancy and water repellency properties of cotton fabrics using silanol based nano composites. Carbohydr Polym 102:727–737. https://doi.org/10.1016/j.carbpol.2013.10.097
Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012a) Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloids Surface B 89:196–202. https://doi.org/10.1016/j.colsurfb.2011.09.015
Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012b) In situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydr Polym 87(2):1706–1712. https://doi.org/10.1016/j.carbpol.2011.09.079
Perera S, Bhushan B, Bandara R, Rajapakse G, Rajapakse S, Bandara C (2013) Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids Surface A 436:975–989. https://doi.org/10.1016/j.colsurfa.2013.08.038
Prasad V, Arputharaj A, Bharimalla AK, Patil PG, Vigneshwaran N (2016) Durable multifunctional finishing of cotton fabrics by in situ synthesis of nano-ZnO. Appl Surf Sci 390:936–940. https://doi.org/10.1016/j.apsusc.2016.08.155
Riaz S, Ashraf M, Hussain T, Hussain MT, Younus A (2019) Fabrication of robust multifaceted textiles by application of functionalized TiO2 nanoparticles. Colloid Surface A. https://doi.org/10.1016/j.colsurfa.2019.123799
Rojas-Andrade MD, Chata G, Rouholiman D, Liu J, Saltikov C, Chen S (2017) Antibacterial mechanisms of graphene-based composite nanomaterials. Nanoscale 9(3):994–1006. https://doi.org/10.1039/c6nr08733g
Salas C, Genzer J, Lucia LA, Hubbe MA, Rojas OJ (2013) Water-wettable polypropylene fibers by facile surface treatment based on soy proteins. ACS Appl Mater Interfaces 5(14):6541–6548. https://doi.org/10.1021/am401065t
Selvam S, Gandhi RR, Suresh J, Gowri S, Ravikumar S, Sundrarajan M (2012) Antibacterial effect of novel synthesized sulfated beta-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Int J Pharm 434(1–2):366–374. https://doi.org/10.1016/j.ijpharm.2012.04.069
Shahid ul I, Sun G (2017) Thermodynamics, kinetics, and multifunctional finishing of textile materials with colorants extracted from natural renewable sources. Acs Sustain Chem Eng 5(9):7451–7466. https://doi.org/10.1021/acssuschemeng.7b01486
Shi L, Santhanakrishnan S, Cheah YS, Li M, Chai CLL, Neoh KG (2016) One-pot UV-triggered o-nitrobenzyl dopamine polymerization and coating for surface antibacterial application. ACS Appl Mater Inter 8(48):33131–33138. https://doi.org/10.1021/acsami.6b07751
Tian H, Zhai Y, Xu C, Liang J (2017) Durable antibacterial cotton fabrics containing stable acyclic N-Halamine Groups. Ind Eng Chem Res 56(28):7902–7909. https://doi.org/10.1021/acs.iecr.7b00863
Wang M, Zhang M, Zhang M, Aizezi M, Zhang Y, Hu J, Wu G (2019) In-situ mineralized robust polysiloxane-Ag@ZnO on cotton for enhanced photocatalytic and antibacterial activities. Carbohydr Polym 217:15–25. https://doi.org/10.1016/j.carbpol.2019.04.042
Wu HX, Tan L, Tang ZW, Yang MY, Xiao JY, Liu CJ, Zhuo RX (2015) Highly efficient antibacterial surface grafted with a triclosan-decorated poly(N-Hydroxyethylacrylamide) brush. ACS Appl Mater Inter 7(12):7008–7015. https://doi.org/10.1021/acsami.5b01210
Xu H, Shi X, Ma H, Lv Y, Zhang L, Mao Z (2011) The preparation and antibacterial effects of dopa-cotton/AgNPs. Appl Surf Sci 257(15):6799–6803. https://doi.org/10.1016/j.apsusc.2011.02.129
Xu Q, Li R, Shen L, Xu W, Wang J, Jiang Q, Zhang L, Fu F, Fu Y, Liu X (2019) Enhancing the surface affinity with silver nano-particles for antibacterial cotton fabric by coating carboxymethyl chitosan and L-cysteine. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.143673
Yang J, Xu H, Zhang L, Zhong Y, Sui X, Mao Z (2017) Lasting superhydrophobicity and antibacterial activity of Cu nanoparticles immobilized on the surface of dopamine modified cotton fabrics. Surf Coat Tech 309:149–154. https://doi.org/10.1016/j.surfcoat.2016.11.058
Yang H, Zhang Q, Chen Y, He Y, Yang F, Lu Z (2018) Microwave-ultrasonic synergistically assisted synthesis of ZnO Coated cotton fabrics with an enhanced antibacterial activity and stability. ACS Appl Biomater 1(2):340–346. https://doi.org/10.1021/acsabm.8b00086
Yao C, Li XS, Neoh KG, Shi ZL, Kang ET (2010) Antibacterial Poly(D, L-Lactide)(PDLLA)fibrous membranes modified with quaternary ammonium moieties. Chin J Polym Sci 28(4):581–588. https://doi.org/10.1007/s10118-010-9094-x
Yao D, Guo Y, Chen S, Tang J, Chen Y (2013) Shaped core/shell polymer nanoobjects with high antibacterial activities via block copolymer microphase separation. Polymer 54(14):3485–3491. https://doi.org/10.1016/j.polymer.2013.05.005
Yazdanshenas ME, Shateri-Khalilabad M (2013) In situ synthesis of silver nanoparticles on alkali-treated cotton fabrics. J Ind Text 42(4):459–474. https://doi.org/10.1177/1528083712444297
Ye X, Qin X, Yan X, Guo J, Huang L, Chen D, Wu T, Shi Q, Tan S, Cai X (2016) π–π conjugations improve the long-term antibacterial properties of graphene oxide/quaternary ammonium salt nanocomposites. Chem Eng J 304:873–881. https://doi.org/10.1016/j.cej.2016.07.026
Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, Skorobogatiy M, Khademhosseini A, Yun SH (2016) Nanotechnology in textiles. ACS Nano 10(3):3042–3068. https://doi.org/10.1021/acsnano.5b08176
Yu Q, Wu Z, Chen H (2015) Dual-function antibacterial surfaces for biomedical applications. Acta Biomater 16:1–13. https://doi.org/10.1016/j.actbio.2015.01.018
Yu M, Wang Z, Lv M, Hao R, Zhao R, Qi L, Liu S, Yu C, Zhang B, Fan C, Li J (2016) Antisuperbug cotton fabric with excellent laundering durability. ACS Appl Mater Inter 8(31):19866–19871. https://doi.org/10.1021/acsami.6b07631
Yu D, Xu L, Hu Y, Li Y, Wang W (2017) Durable antibacterial finishing of cotton fabric based on thiol-epoxy click chemistry. RSC Adv 7(31):18838–18843. https://doi.org/10.1039/c6ra28803k
Zhang S, Yang X, Tang B, Yuan L, Wang K, Liu X, Zhu X, Li J, Ge Z, Chen S (2018) New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine. Chem Eng J 336:123–132. https://doi.org/10.1016/j.cej.2017.10.168
Zhang T, Gu J, Liu X, Wei D, Zhou H, Xiao H, Zhang Z, Yu H, Chen S (2020) Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine. Mat Sci Eng C-Mater. https://doi.org/10.1016/j.msec.2020.110855
Zhao F, Huang Y (2011) Uniform modification of carbon fibers in high density fabric by gamma-ray irradiation grafting. Mater Lett 65(23–24):3351–3353. https://doi.org/10.1016/j.matlet.2011.05.023
Zhao H, Xie Z, Ruppel S, Zhou X, Chen S, Liang JF, Wang X (2019) Stereochemical strategy advances microbially antiadhesive cotton textile in safeguarding skin flora. Adv Healthc Mater 8(15):1. https://doi.org/10.1002/adhm.201900232
Zhu D, Cheng H, Li J, Zhang W, Shen Y, Chen S, Ge Z, Chen S (2016) Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mat Sci Eng C-Mater 61:79–84. https://doi.org/10.1016/j.msec.2015.12.024
Zou W, Chen Y, Zhang X, Li J, Sun L, Gui Z, Du B, Chen S (2018) Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydr Polym 202:246–257. https://doi.org/10.1016/j.carbpol.2018.08.124
