Long-Term Venovenous Connection for Extracorporeal Carbon Dioxide Removal (ECCO2R)–Numerical Investigation of the Connection to the Common Iliac Veins
Tóm tắt
Currently used cannulae for extracorporeal carbon dioxide removal (ECCO2R) are associated with complications such as thrombosis and distal limb ischemia, especially for long-term use. We hypothesize that the risk of these complications is reducible by attaching hemodynamically optimized grafts to the patient’s vessels. In this study, as a first step towards a long-term stable ECCO2R connection, we investigated the feasibility of a venovenous connection to the common iliac veins. To ensure its applicability, the drainage of reinfused blood (recirculation) and high wall shear stress (WSS) must be avoided. A reference model was selected for computational fluid dynamics, on the basis of the analysis of imaging data. Initially, a sensitivity analysis regarding recirculation was conducted using as variables: blood flow, the distance of drainage and return to the iliocaval junction, as well as the diameter and position of the grafts. Subsequently, the connection was optimized regarding recirculation and the WSS was evaluated. We validated the simulations in a silicone model traversed by dyed fluid. The simulations were in good agreement with the validation measurements (mean deviation 1.64%). The recirculation ranged from 32.1 to 0%. The maximum WSS did not exceed 5.57 Pa. The position and diameter of the return graft show the highest influence on recirculation. A correlation was ascertained between recirculation and WSS. Overall, an inflow jet directed at a vessel wall entails not only high WSS, but also a flow separation and thereby an increased recirculation. Therefore, return grafts aligned to the vena cava are crucial. In conclusion, a connection without recirculation could be feasible and therefore provides a promising option for a long-term ECCO2R connection.
Tài liệu tham khảo
Arora, R. C., D. Nagpal, Y. Lamarche, R. Sanjanwala, and A. Szwajcer. When on ECMO awaken, extubate and mobilize. In: difficult decisions in cardiothoracic critical care surgery: an evidence-based approach, edited by V. A. Lonchyna. Cham: Springer, 2019.
Arvand, A., M. Hormes, and H. Reul. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump. Artif Organs. 29:531–540, 2005. https://doi.org/10.1111/j.1525-1594.2005.29089.x.
Bartlett, R. H. Late recovery from total lung injury after ECMO support. Egypt J Crit Care Med 6:63–64, 2018. https://doi.org/10.1016/j.ejccm.2018.11.001.
Bartlett, R. H., and K. B. Deatrick. Current and future status of extracorporeal life support for respiratory failure in adults. Curr Opin Crit Care. 22:80–85, 2016. https://doi.org/10.1097/MCC.0000000000000274.
Baskurt, O. K., and H. J. Meiselman. Blood rheology and hemodynamics. Semin Thromb Hemost. 29:435–450, 2003. https://doi.org/10.1055/s-2003-44551.
Bermudez, C. A., R. V. Rocha, P. L. Sappington, Y. Toyoda, H. N. Murray, and A. J. Boujoukos. Initial experience with single cannulation for venovenous extracorporeal oxygenation in adults. Ann Thorac Surg 90:991–995, 2010. https://doi.org/10.1016/j.athoracsur.2010.06.017.
Biscotti, M., J. Sonett, and M. Bacchetta. ECMO as bridge to lung transplant. Thorac Surg Clin. 25:17–25, 2015. https://doi.org/10.1016/j.thorsurg.2014.09.010.
Borchardt, R., S. Sonntag, P. Ritter, F. Boehning, S. Groß-Hardt, F. Hesselmann, et al. In-vivo study of a novel long-term lung support device for PAH, bridge-to-transplant and bridge-to-candidacy. J Heart Lung Transpl 36:S74–S75, 2017. https://doi.org/10.1016/j.healun.2017.01.185.
Chabry, Yuthiline, Misbaou Barry, Alphonse Nzomvuama, Daniel Herduin, Mathieu Guilbart, and Thierry Caus. ECMO related complications: cannula thrombosis, diagnosis and strategy: a clinical case. BJSTR 2018. https://doi.org/10.26717/BJSTR.2018.02.000793.
Chan, W. Y., Y. Ding, and J. Y. Tu. Modeling of non-Newtonian blood flow through a stenosed artery incorporating fluid-structure interaction. ANZIAMJ. 47:507, 2006. https://doi.org/10.21914/anziamj.v47i0.1059.
Chan, K. T., R. A. Popat, D. Y. Sze, W. T. Kuo, N. Kothary, J. D. Louie, et al. Common iliac vein stenosis and risk of symptomatic pulmonary embolism: an inverse correlation. J Vasc Interv Radiol. 22:133–141, 2011. https://doi.org/10.1016/j.jvir.2010.10.009.
Conrad, S. A., L. M. Broman, F. S. Taccone, R. Lorusso, M. V. Malfertheiner, F. Pappalardo, et al. The extracorporeal life support organization maastricht treaty for nomenclature in extracorporeal life support. A position paper of the extracorporeal life support organization. Am J Respir Crit Care Med. 198:447–451, 2018. https://doi.org/10.1164/rccm.201710-2130cp.
Conway, R. G., D. Tran, B. P. Griffith, and Z. J. Wu. Extracorporeal Membrane Oxygenation (ECMO) for long-term support: recent advances. IntechOpen 2018. https://doi.org/10.5772/intechopen.76506.
Daniel, J. M., P. A. Bernard, S. C. Skinner, P. Bhandary, A. Ruzic, M. K. Bacon, and H. O. Ballard. Hollow fiber oxygenator composition has a significant impact on failure rates in neonates on extracorporeal membrane oxygenation: a retrospective analysis. J Pediatr Intensive Care. 7:7–13, 2018. https://doi.org/10.1055/s-0037-1599150.
Fraser, K. H., T. Zhang, M. E. Taskin, B. P. Griffith, and Z. J. Wu. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng. 134:81002, 2012. https://doi.org/10.1115/1.4007092.
Gattinoni, L., F. Vassalli, F. Romitti, F. Vasques, I. Pasticci, E. Duscio, and M. Quintel. Extracorporeal gas exchange: when to start and how to end? Crit Care. 23:203, 2019. https://doi.org/10.1186/s13054-019-2437-2.
Grus, T., G. Grusová, L. Lambert, R. Banerjee, J. Matěcha, and M. Mlček. The influence of the anastomosis angle on the hemodynamics in the distal anastomosis in the infrainguinal bypass: an in vitro study. Physiol Res. 65:591–595, 2016.
Grus, T., L. Lambert, J. Matěcha, G. Grusová, M. Špaček, and M. Mlček. The ratio of diameters between the target artery and the bypass modifies hemodynamic parameters related to intimal hyperplasia in the distal end-to-side anastomosis. Physiol Res. 65:901–908, 2016.
Hill, J. D., T. G. O’Brien, J. J. Murray, L. Dontigny, M. L. Bramson, J. J. Osborn, and F. Gerbode. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med. 286:629–634, 1972. https://doi.org/10.1056/nejm197203232861204.
Hoopes, C. W., J. Kukreja, J. Golden, D. L. Davenport, E. Diaz-Guzman, and J. B. Zwischenberger. Extracorporeal membrane oxygenation as a bridge to pulmonary transplantation. J Thorac Cardiovasc Surg. 145:862–867, 2013. https://doi.org/10.1016/j.jtcvs.2012.12.022; (discussion 867-8).
Javidfar, J. The challenges faced with early mobilization of patients on extracorporeal membrane oxygenation. Crit Care Med. 46:161–163, 2018. https://doi.org/10.1097/CCM.0000000000002822.
Jayaraman, A. L., D. Cormican, P. Shah, and H. Ramakrishna. Cannulation strategies in adult veno-arterial and veno-venous extracorporeal membrane oxygenation: techniques, limitations, and special considerations. Ann Card Anaesth. 20:S11–S18, 2017. https://doi.org/10.4103/0971-9784.197791.
Kaesler, A., M. Rosen, P. C. Schlanstein, G. Wagner, S. Groß-Hardt, T. Schmitz-Rode, et al. How computational modeling can help to predict gas transfer in artificial lungs early during development. ASAIO J 2019. https://doi.org/10.1097/MAT.0000000000001098.
Kalem, V., D. Buchwald, J. Strauch, A. Sidiropoulos, R. Meindl, T. A. Schildhauer, and J. Swol. Surgical extraction after thrombosis around the Avalon dual lumen cannula. Ann R Coll Surg Engl. 96:106E–108E, 2014. https://doi.org/10.1308/003588414X13824511649814.
Karagiannidis, C., F. Hesselmann, and E. Fan. Physiological and technical considerations of extracorporeal CO2 removal. Crit Care. 23:75, 2019. https://doi.org/10.1186/s13054-019-2367-z.
Karimi, S., M. Dabagh, P. Vasava, M. Dadvar, B. Dabir, and P. Jalali. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J Non-Newtonian Fluid Mech 207:42–52, 2014. https://doi.org/10.1016/j.jnnfm.2014.03.007.
Kaufeld, T., E. Beckmann, F. Ius, N. Koigeldiev, W. Sommer, B. Mashaqi, et al. Risk factors for critical limb ischemia in patients undergoing femoral cannulation for venoarterial extracorporeal membrane oxygenation: Is distal limb perfusion a mandatory approach? Perfusion. 2019. https://doi.org/10.1177/0267659119827231.
Khan, M. F., Z. A. Quadri, and S. P. Bhat. Study of Newtonian and non-Newtonian effect of blood flow in portal vein in normal and hypertension conditions using CFD technique. Int J Eng Res Technol 2013:399–406, 2013.
Kim, E. J., H. C. Paik, M. S. Park, M.-H. Kim, S.-O. Koh, Y. J. Lee, and S. Na. One hundred seven days of ECMO as a bridge to lung transplantation: the longest duration among elderly patients. Korean J Crit Care Med. 29:48, 2014. https://doi.org/10.4266/kjccm.2014.29.1.48.
Lindholm, J. A. Cannulation for veno-venous extracorporeal membrane oxygenation. J Thorac Dis. 10:S606–S612, 2018. https://doi.org/10.21037/jtd.2018.03.101.
Liu, X., Y. Fan, X. Deng, and F. Zhan. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J Biomech 44:1123–1131, 2011. https://doi.org/10.1016/j.jbiomech.2011.01.024.
MacLaren, G., A. Combes, and R. H. Bartlett. Contemporary extracorporeal membrane oxygenation for adult respiratory failure: life support in the new era. Intensive Care Med. 38:210–220, 2012. https://doi.org/10.1007/s00134-011-2439-2.
Madhani, S. P., B. J. Frankowski, S.-H. Ye, G. W. Burgreen, W. R. Wagner, R. Kormos, et al. In vivo 5 day animal studies of a compact, wearable pumping artificial lung. ASAIO J. 65:94–100, 2019. https://doi.org/10.1097/MAT.0000000000000740.
Makdisi, G., and I.-W. Wang. Extra Corporeal Membrane Oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis. 7:E166–E176, 2015. https://doi.org/10.3978/j.issn.2072-1439.2015.07.17.
Morales, H. G., I. Larrabide, A. J. Geers, M. L. Aguilar, and A. F. Frangi. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms. J Biomech 46:2158–2164, 2013. https://doi.org/10.1016/j.jbiomech.2013.06.034.
Na, S. J., J.-S. Jung, S.-B. Hong, W. H. Cho, S.-M. Lee, Y.-J. Cho, et al. Clinical outcomes of patients receiving prolonged extracorporeal membrane oxygenation for respiratory support. Ther Adv Respir Dis. 13:1753466619848941, 2019. https://doi.org/10.1177/1753466619848941.
Oguzkurt, L., F. Tercan, M. A. Pourbagher, O. Kizilkilic, R. Turkoz, and F. Boyvat. Computed tomography findings in 10 cases of iliac vein compression (May-Thurner) syndrome. Eur J Radiol. 55:421–425, 2005. https://doi.org/10.1016/j.ejrad.2004.11.002.
Pavlushkov, E., M. Berman, and K. Valchanov. Cannulation techniques for extracorporeal life support. Ann Transl Med. 5:70, 2017. https://doi.org/10.21037/atm.2016.11.47.
Raju, S., W. J. Buck, W. Crim, and A. Jayaraj. Optimal sizing of iliac vein stents. Phlebology. 33:451–457, 2018. https://doi.org/10.1177/0268355517718763.
Razaghi, R., A. Karimi, S. Rahmani, and M. Navidbakhsh. A computational fluid-structure interaction model of the blood flow in the healthy and varicose saphenous vein. Vascular. 24:254–263, 2016. https://doi.org/10.1177/1708538115594095.
Razavi, A., E. Shirani, and M. R. Sadeghi. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech 44:2021–2030, 2011. https://doi.org/10.1016/j.jbiomech.2011.04.023.
Reeb, J., A. Olland, S. Renaud, A. Lejay, N. Santelmo, G. Massard, and P.-E. Falcoz. Vascular access for extracorporeal life support: tips and tricks. J Thorac Dis. 8:S353–S363, 2016. https://doi.org/10.21037/jtd.2016.04.42.
Sauer, C. M., D. D. Yuh, and P. Bonde. Extracorporeal membrane oxygenation use has increased by 433% in adults in the United States from 2006 to 2011. ASAIO J. 61:31–36, 2015. https://doi.org/10.1097/MAT.0000000000000160.
Schweickert, W. D., M. C. Pohlman, A. S. Pohlman, C. Nigos, A. J. Pawlik, C. L. Esbrook, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373:1874–1882, 2009. https://doi.org/10.1016/S0140-6736(09)60658-9.
Strecker, T., F. Münch, and M. Weyand. One hundred ten days of extracorporeal membrane oxygenation in a young woman with postpartum cerebral venous thrombosis and acute respiratory distress syndrome. Heart Surg Forum. 15:180–181, 2012. https://doi.org/10.1532/HSF98.20111068.
Thamsen, B., B. Blümel, J. Schaller, C. O. Paschereit, K. Affeld, L. Goubergrits, and U. Kertzscher. Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps. Artif Organs. 39:651–659, 2015. https://doi.org/10.1111/aor.12542.
Thompson, A. J., S. Buchan, B. Carr, C. Poling, M. Hayes, U. P. Fernando, et al. A low resistance, concentric-gated pediatric artificial lung for end-stage lung failure. J Heart Lung Transplant. 37:1029–1034, 2018. https://doi.org/10.1016/j.healun.2018.03.019.
Tissot, C., W. Habre, P. Soccal, M. I. Hug, D. Bettex, M. Pellegrini, et al. Successful lung transplant after prolonged extracorporeal membrane oxygenation (ECMO) in a child with pulmonary hypertension: a case report. Res Cardiovasc Med. 5:e32545, 2016. https://doi.org/10.5812/cardiovascmed.32545.
Wells, C. L., J. Forrester, J. Vogel, R. Rector, A. Tabatabai, and D. Herr. safety and feasibility of early physical therapy for patients on extracorporeal membrane oxygenator: University of Maryland Medical Center Experience. Crit Care Med. 46:53–59, 2018. https://doi.org/10.1097/CCM.0000000000002770.
Wiktor, A. J., J. W. Haft, R. H. Bartlett, P. K. Park, K. Raghavendran, and L. M. Napolitano. Prolonged VV ECMO (265 Days) for ARDS without technical complications. ASAIO J. 61:205–206, 2015. https://doi.org/10.1097/MAT.0000000000000181.
Yau, P., Y. Xia, S. Shariff, W. A. Jakobleff, S. Forest, E. C. Lipsitz, et al. Factors associated with ipsilateral limb ischemia in patients undergoing femoral cannulation extracorporeal membrane oxygenation. Ann Vasc Surg. 54:60–65, 2019. https://doi.org/10.1016/j.avsg.2018.08.073.