Logistic regression and artificial neural network classification models: a methodology review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Duda, 2000
Vapnik, 2000
Cristianini, 2000
Schölkopf, 2002
Dasarathy, 1991
Ripley, 1996
Breiman, 1984
Quinlan, 1993
Bishop, 1995
Hastie, 2001
Press, 1993
Copas, 1983, Regression, prediction and shrinkage (with discussion), J. Roy. Stat. Soc. B, 45, 311, 10.1111/j.2517-6161.1983.tb01258.x
Gelfand, 1996, Efficient parametrisations for generalized linear mixed models, vol. 5, 165
Neal, 1996
Hosmer, 2000
Harrell, 2001
Zurada J, Malinowski A, Cloete A. Sensitivity analysis for minimization of input dimension for feedforward neural networks. In: Proc IEEE Int Symp Circuits Systems, vol. 6; 1994. p. 447–50
Stone, 1974, Cross-validatory choice and assessment of statistical predications, J. Roy. Stat. Soc., 36, 111, 10.1111/j.2517-6161.1974.tb00994.x
Allen, 1977, The relationship between variable selection and data augmentation and a method of prediction, Technometric, 16, 125, 10.1080/00401706.1974.10489157
Efron, 1993
Efron, 1983, Estimating the error rate of a prediction rule: some improvements on cross-validation, J. Am. Stat. Assoc., 78, 316, 10.1080/01621459.1983.10477973
Hanley, 1983, A method of comparing the areas under receiver operating characteristic curves derived from the same cases, Radiology, 148, 839, 10.1148/radiology.148.3.6878708
DeLong, 1988, Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, Biometrics, 44, 837, 10.2307/2531595
Altman, 2000, What do we mean by validating a prognostic model?, Stat. Med., 19, 453, 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5
Vergouwe, 2002, Validity of prognostic models: when is a model clinically useful, Semin. Urol. Oncol., 20, 96, 10.1053/suro.2002.32521
Schwarzer, 2000, On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology, Stat. Med., 19, 541, 10.1002/(SICI)1097-0258(20000229)19:4<541::AID-SIM355>3.0.CO;2-V
Lisboa, 2002, A review of evidence of health benefit from artificial neural networks in medical intervention, Neural Networks, 15, 11, 10.1016/S0893-6080(01)00111-3
Mitchell, 1997
Dreiseitl, 2001, A comparison of machine learning methods for the diagnosis of pigmented skin lesions, J. Biomed. Inform., 34, 28, 10.1006/jbin.2001.1004
Chang, 2003, Support vector machines for diagnosis of breast tumors on US images, Acad. Radiol., 10, 189, 10.1016/S1076-6332(03)80044-2
Salzberg, 1997, On comparing classifiers: pitfalls to avoid and a recommended approach, Data Min. Knowl. Disc, 1, 317, 10.1023/A:1009752403260
Harrell, 1996, Multivariable prognostic models: issues in developing models, evaluation assumptions and adequacy, and measuring and reducing errors, Stat. Med., 15, 361, 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
Hilden, 1998, Neural networks and the roles of cross validation, Med. Decis. Making, 18, 122, 10.1177/0272989X9801800119
Steyerberg, 1998, Neural networks, logistic regression, and calibration, Med. Decis. Making, 18, 349, 10.1177/0272989X9801800314