Logarithmically Improved Regularity Criteria for the Navier–Stokes and MHD Equations

Springer Science and Business Media LLC - Tập 13 - Trang 557-571 - 2010
Jishan Fan1,2, Song Jiang3, Gen Nakamura2, Yong Zhou4
1Department of Applied Mathematics, Nanjing Forestry University, Nanjing, People’s Republic of China
2Department of Mathematics, Hokkaido University, Sapporo, Japan
3LCP, Institute of Applied Physics and Computational Mathematics, Beijing, People’s Republic of China
4Department of Mathematics, Zhejiang Normal University, Jinhua, People’s Republic of China

Tóm tắt

In this paper, logarithmically improved regularity criteria for the Navier–Stokes and the MHD equations are established in terms of both the vorticity field and the pressure.

Tài liệu tham khảo

Beirão da Veiga H.: A new regularity class for the Navier–Stokes equations in \({{\mathbb R}^n}\) . Chin. Ann. Math. Ser. B 16, 407–412 (1995) Chan C.H., Vasseur A.: Log Improvement of the Prodi–Serrin Criteria for Navier–Stokes Equations. Methods Appl. Anal. 14, 197–212 (2007) Chen Q., Miao C., Zhang Z.: On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Commun. Math. Phys. 284, 919–930 (2008) Duoandikoetxea, J.: Fourier analysis. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001) Escauriaza L., Serëgin G.A., Sverak V.: L 3,∞-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58, 3–44 (2003) Fan J., Jiang S., Ni G.: On regularity criteria for the n-dimensional Navier–Stokes equations in terms of the pressure. J. Differ. Equ. 244, 2936–2979 (2008) Fan, J., Jiang, S., Nakamura, G.: On logarithmically improved regularity criteria for the Navier–Stokes equations in \({{\mathbb R}^n}\) (2009, submitted) Fan, J., Ozawa, T.: Regularity criterion for weak solutions to the Navier–Stokes equations in terms of the gradient of the pressure. J. Inequal. Appl. Art.ID412678, 6pp (2008) Friedman A.: Partial differential equations. Holt, Rinehart and Winston Inc., New York-Montreal (1969) He C., Xin Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254 (2005) Hopf E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951) Kato T., Ponce G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988) Kozono H., Ogawa T., Taniuchi Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002) Kozono H., Taniuchi Y.: Bilinear estimates in BMO and the Navier–Stokes equations. Math. Z. 235, 173–194 (2000) Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 183–248 (1934) Montgomery-Smith S.: Conditions implying regularity of the three dimensional Navier–Stokes equation. Appl. Math. 50, 451–464 (2005) Ohyama T.: Interior regularity of weak solutions of the time-dependent Navier–Stokes equation. Proc. Jpn Acad. 36, 273–277 (1960) Prodi G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959) Sermange M., Temam R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983) Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Nonlinear Problems. Proc. Sympos., Madison, WI, pp. 69–98. University of Wisconsin Press, Madison, WI (1963) Struwe M.: On partial regularity results for the Navier–Stokes equations. Commun. Pure Appl. Math. 41, 437–458 (1988) Wu J.: Regularity criteria for the generalized MHD equations. Commun. Partial Differ. Equ. 33, 285–306 (2008) Zhou, Y., Lei, Z.: Logarithmically improved criteria for Euler and Navier–Stokes equations (2008, submitted) Zhou Y.: On regularity criteria in terms of pressure for the Navier–Stokes equations in \({\mathbb{R}^{3}}\) . Proc. Am. Math. Soc. 134, 149–156 (2005) Zhou Y.: On a regularity criterion in terms of the gradient of pressure for the Navier–Stokes equations in \({{\mathbb R}_N}\) . Z. Angew. Math. Phys. 57, 384–392 (2006) Zhou Y.: Remarks on regularities for the 3D MHD equations. Disc. Cont. Dyn. Syst. 12, 881–886 (2005) Zhou Y.: Regularity criteria for the 3D MHD equations in terms of the pressure. Int. J. Non-Linear Mech. 41, 1174–1180 (2006) Zhou Y.: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. H. Poincar Anal. Non Linaire 24, 491–505 (2007) Zhou, Y., Fan, J.: Regularity criteria for the viscous Camassa–Holm equations. Int. Math. Res. Not. IMRN, 2508–2518 (2009) Zhou, Y., Fan, J.: On regularity criteria in terms of pressure for the 3D viscous MHD equations (2009, submitted) Zhou, Y., Fan, J.: Logarithmically improved regularity criteria for the 3-D viscous MHD equations (2009, submitted) Zhou Y., Gala S.: Logarithmically improved regularity criteria for the Navier–Stokes equations in multiplier spaces. J. Math. Anal. Appl. 356, 498–501 (2009) Zhou Y., Gala S.: Regularity criteria for the solutions to the 3D MHD equations in the multiplier space. Z. Angew. Math. Phys. 61, 193–199 (2010)