Locking-free isogeometric collocation methods for spatial Timoshenko rods

Ferdinando Auricchio1,2,3, L. Beirão da Veiga4, Josef Kiendl2, Carlo Lovadina3,5, Alessandro Reali1,2,3
1Center for Advanced Numerical Simulations (CESNA), IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
2Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
3IMATI–CNR, Via Ferrata 1, Pavia, Italy
4Mathematics Department "F.Enriques", University of Milan, Via Cesare Saldini 50, 20133 Milan, Italy
5Mathematics Department, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arunakirinathar, 1993, Mixed finite element methods for elastic rods of arbitrary geometry, Numer. Math., 64, 13, 10.1007/BF01388679

Auricchio, 2007, A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput. Meth. Appl. Mech. Engrg., 197, 160, 10.1016/j.cma.2007.07.005

Auricchio, 2010, Isogeometric collocation methods, Math. Models Meth. Appl. Sci., 20, 2075, 10.1142/S0218202510004878

Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Meth. Appl. Mech. Engrg., 10.1016/j.cma.2012.03.026

Auricchio, 2010, The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations, Comput. Meth. Appl. Mech. Engrg., 199, 314/, 10.1016/j.cma.2008.06.004

Auricchio, 2012, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Meth. Appl. Mech. Engrg., 10.1016/j.cma.2012.04.014

Bazilevs, 2006, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Meth. Appl. Sci., 16, 1, 10.1142/S0218202506001455

Bazilevs, 2012, A computational procedure for prebending of wind turbine blades, Int. J. Numer. Meth. Engrg., 89, 323, 10.1002/nme.3244

Bazilevs, 2011, 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades, Int. J. Numer. Meth. Fluids, 65, 236, 10.1002/fld.2454

Bazilevs, 2007, Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. Meth. Appl. Mech. Engrg., 196, 4853, 10.1016/j.cma.2007.06.026

Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Meth. Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016

Beirão da Veiga, 2011, Some estimates for h−p−k−refinement in isogeometric analysis, Numer. Math., 118, 271, 10.1007/s00211-010-0338-z

Beirão da Veiga, 2012, An isogeometric method for the Reissner–Mindlin plate bending problem, Comput. Meth. Appl. Mech. Engrg., 209–212, 45, 10.1016/j.cma.2011.10.009

Beirão da Veiga, 2012, Overlapping Schwarz methods for isogeometric analysis, SIAM J. Numer. Anal., 50, 1394, 10.1137/110833476

Beirão da Veiga, 2012, Anisotropic NURBS approximation in isogeometric analysis, Comput. Meth. Appl. Mech. Engrg., 209-212, 1, 10.1016/j.cma.2011.10.016

Beirão da Veiga, 2012, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Meth. Appl. Mech. Engrg., 241–244, 38, 10.1016/j.cma.2012.05.020

Chapelle, 1997, A locking-free approximation of curved rods by straight beam elements, Numer. Math., 77, 299, 10.1007/s002110050288

Cottrell, 2009

Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Meth. Appl. Mechan. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027

Cottrell, 2007, Studies of refinement and continuity in isogeometric structural analysis, Comput. Meth. Appl. Mechan. Engrg., 196, 4160, 10.1016/j.cma.2007.04.007

de Boor, 2001

de Falco, 2011, GeoPDEs: a research tool for IsoGeometric Analysis of PDEs, Adv. Engrg. Softw., 42, 1020, 10.1016/j.advengsoft.2011.06.010

Demko, 1985, On the existence of interpolation projectors onto spline spaces, J. Approx. Theory, 43, 151, 10.1016/0021-9045(85)90123-6

Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Meth. Appl. Mechan. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008

Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Meth. Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006

Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Meth. Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004

Johnson, 2005, A B-spline collocation method for solving the incompressible Navier–Stokes equations using an ad hoc method: the boundary residual method, Comput. Fluids, 34, 121, 10.1016/j.compfluid.2004.03.005

Kiendl, 2010, The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches, Comput. Meth. Appl. Mech. Engrg., 199, 2403, 10.1016/j.cma.2010.03.029

Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Meth. Appl. Mech. Engrg., 198, 3902, 10.1016/j.cma.2009.08.013

Nguyen-Thanh, 2012, Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Meth. Appl. Mech. Engrg., 200, 3410, 10.1016/j.cma.2011.08.014

Reali, 2006, An isogeometric analysis approach for the study of structural vibrations, J. Earthquake Engrg., 10, 1, 10.1080/13632460609350626

D. Schillinger, J.A. Evans, A. Reali, M.A. Scott, T.J.R. Hughes, Isogeometric Collocation Methods: Cost Comparison with Galerkin Methods and Extension to Hierarchical Discretizations, ICES Reports 13-03, 2013.

Schmidt, 2010, Realization of an integrated structural design process: analysis–suitable geometric modeling and isogeometric analysis, Comput. Visual. Sci., 13, 315, 10.1007/s00791-010-0147-z

Shojaee, 2012, Free vibration analysis of thin plates by using a NURBS-based isogeometric approach, Finite Elem. Anal. Des., 61, 23, 10.1016/j.finel.2012.06.005