Locking-free isogeometric collocation methods for spatial Timoshenko rods
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arunakirinathar, 1993, Mixed finite element methods for elastic rods of arbitrary geometry, Numer. Math., 64, 13, 10.1007/BF01388679
Auricchio, 2007, A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput. Meth. Appl. Mech. Engrg., 197, 160, 10.1016/j.cma.2007.07.005
Auricchio, 2010, Isogeometric collocation methods, Math. Models Meth. Appl. Sci., 20, 2075, 10.1142/S0218202510004878
Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Meth. Appl. Mech. Engrg., 10.1016/j.cma.2012.03.026
Auricchio, 2010, The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations, Comput. Meth. Appl. Mech. Engrg., 199, 314/, 10.1016/j.cma.2008.06.004
Auricchio, 2012, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Meth. Appl. Mech. Engrg., 10.1016/j.cma.2012.04.014
Bazilevs, 2006, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Meth. Appl. Sci., 16, 1, 10.1142/S0218202506001455
Bazilevs, 2012, A computational procedure for prebending of wind turbine blades, Int. J. Numer. Meth. Engrg., 89, 323, 10.1002/nme.3244
Bazilevs, 2011, 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades, Int. J. Numer. Meth. Fluids, 65, 236, 10.1002/fld.2454
Bazilevs, 2007, Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. Meth. Appl. Mech. Engrg., 196, 4853, 10.1016/j.cma.2007.06.026
Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Meth. Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016
Beirão da Veiga, 2011, Some estimates for h−p−k−refinement in isogeometric analysis, Numer. Math., 118, 271, 10.1007/s00211-010-0338-z
Beirão da Veiga, 2012, An isogeometric method for the Reissner–Mindlin plate bending problem, Comput. Meth. Appl. Mech. Engrg., 209–212, 45, 10.1016/j.cma.2011.10.009
Beirão da Veiga, 2012, Overlapping Schwarz methods for isogeometric analysis, SIAM J. Numer. Anal., 50, 1394, 10.1137/110833476
Beirão da Veiga, 2012, Anisotropic NURBS approximation in isogeometric analysis, Comput. Meth. Appl. Mech. Engrg., 209-212, 1, 10.1016/j.cma.2011.10.016
Beirão da Veiga, 2012, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Meth. Appl. Mech. Engrg., 241–244, 38, 10.1016/j.cma.2012.05.020
Chapelle, 1997, A locking-free approximation of curved rods by straight beam elements, Numer. Math., 77, 299, 10.1007/s002110050288
Cottrell, 2009
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Meth. Appl. Mechan. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027
Cottrell, 2007, Studies of refinement and continuity in isogeometric structural analysis, Comput. Meth. Appl. Mechan. Engrg., 196, 4160, 10.1016/j.cma.2007.04.007
de Boor, 2001
de Falco, 2011, GeoPDEs: a research tool for IsoGeometric Analysis of PDEs, Adv. Engrg. Softw., 42, 1020, 10.1016/j.advengsoft.2011.06.010
Demko, 1985, On the existence of interpolation projectors onto spline spaces, J. Approx. Theory, 43, 151, 10.1016/0021-9045(85)90123-6
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Meth. Appl. Mechan. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Meth. Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006
Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Meth. Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004
Johnson, 2005, A B-spline collocation method for solving the incompressible Navier–Stokes equations using an ad hoc method: the boundary residual method, Comput. Fluids, 34, 121, 10.1016/j.compfluid.2004.03.005
Kiendl, 2010, The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches, Comput. Meth. Appl. Mech. Engrg., 199, 2403, 10.1016/j.cma.2010.03.029
Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Meth. Appl. Mech. Engrg., 198, 3902, 10.1016/j.cma.2009.08.013
Nguyen-Thanh, 2012, Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Meth. Appl. Mech. Engrg., 200, 3410, 10.1016/j.cma.2011.08.014
Reali, 2006, An isogeometric analysis approach for the study of structural vibrations, J. Earthquake Engrg., 10, 1, 10.1080/13632460609350626
D. Schillinger, J.A. Evans, A. Reali, M.A. Scott, T.J.R. Hughes, Isogeometric Collocation Methods: Cost Comparison with Galerkin Methods and Extension to Hierarchical Discretizations, ICES Reports 13-03, 2013.
Schmidt, 2010, Realization of an integrated structural design process: analysis–suitable geometric modeling and isogeometric analysis, Comput. Visual. Sci., 13, 315, 10.1007/s00791-010-0147-z