Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vị trí của các nghiên cứu và bằng chứng về ảnh hưởng của việc ăn cỏ lên thực vật Bắc Cực: một bản đồ hệ thống
Tóm tắt
Các loài ăn cỏ thay đổi cấu trúc và chức năng của hệ sinh thái tundra. Hiểu được tác động của chúng là điều cần thiết để đánh giá phản ứng của các hệ sinh thái này đối với những thay đổi môi trường đang diễn ra. Tuy nhiên, các tác động của động vật ăn cỏ lên thực vật cũng như cấu trúc và chức năng của hệ sinh thái thay đổi theo từng vùng Bắc Cực. Sự biến thiên không gian mạnh mẽ trong các tác động của động vật ăn cỏ cho thấy rằng kết quả của các nghiên cứu riêng lẻ về việc ăn cỏ phụ thuộc vào điều kiện địa phương, tức là vào bối cảnh sinh thái của chúng. Một bước quan trọng đầu tiên trong việc đánh giá xem liệu có thể đưa ra những kết luận tổng quát hay không là xác định các nghiên cứu hiện có và đánh giá mức độ bao quát của chúng đối với các điều kiện môi trường cơ bản ở Bắc Cực. Bản đồ hệ thống này nhằm xác định các bối cảnh sinh thái mà ở đó các tác động của động vật ăn cỏ lên thực vật đã được nghiên cứu ở Bắc Cực. Câu hỏi chính của bản đồ hệ thống là: “Có bằng chứng gì về tác động của động vật ăn cỏ lên thực vật Bắc Cực?”. Chúng tôi đã sử dụng một quy trình bản đồ hệ thống đã được công bố để xác định các nghiên cứu về tác động của động vật ăn cỏ lên thực vật Bắc Cực. Chúng tôi tiến hành tìm kiếm tài liệu liên quan trong các cơ sở dữ liệu trực tuyến, công cụ tìm kiếm và các trang web chuyên ngành. Tài liệu đã được sàng lọc để xác định các nghiên cứu đủ điều kiện, được định nghĩa là có dữ liệu gốc về tác động của động vật ăn cỏ lên thực vật và cộng đồng thực vật Bắc Cực. Chúng tôi đã trích xuất thông tin về các biến mô tả bối cảnh sinh thái của các nghiên cứu, từ chính các nghiên cứu đó và từ dữ liệu địa không gian. Chúng tôi đã tổng hợp các phát hiện theo cách kể chuyện và tạo ra một ứng dụng Shiny nơi dữ liệu đã được mã hóa có thể tìm kiếm và các biến có thể được khám phá trực quan. Chúng tôi đã xác định được 309 bài báo liên quan với 662 nghiên cứu (đại diện cho các bối cảnh sinh thái khác nhau hoặc tập dữ liệu trong cùng một bài báo). Những nghiên cứu này đề cập đến việc ăn cỏ của động vật có xương sống nhiều gấp bảy lần so với việc ăn cỏ của động vật không xương sống. Về mặt địa lý, cụm nghiên cứu lớn nhất nằm ở Bắc Fennoscandia. Những phần ấm hơn và ẩm ướt hơn của Bắc Cực có số lượng nghiên cứu lớn nhất, như những khu vực ven biển và những khu vực mà sự gia tăng nhiệt độ là trung bình. Ngược lại, các nghiên cứu đã bao trùm toàn bộ phạm vi các biến bối cảnh sinh thái mô tả đa dạng động vật ăn cỏ có xương sống Bắc Cực cũng như mật độ và tác động dân số con người. Cơ sở bằng chứng hiện tại có thể không đủ để hiểu rõ ảnh hưởng của động vật ăn cỏ lên thực vật Bắc Cực trên toàn vùng, khi chúng tôi đã xác định được những thiên lệch rõ ràng trong sự phân bố các nghiên cứu về động vật ăn cỏ ở Bắc Cực và cơ sở bằng chứng hạn chế về việc ăn cỏ của động vật không xương sống. Đặc biệt, sự quá mức đại diện của các nghiên cứu tại những khu vực có sự gia tăng nhiệt độ vừa phải ngăn cản việc tổng quát hóa mạnh mẽ về tác động của động vật ăn cỏ dưới các kịch bản khí hậu khác nhau.
Từ khóa
#tundra #ăn cỏ #sinh thái Bắc Cực #nghiên cứu sinh thái #động vật có xương sống #động vật không xương sốngTài liệu tham khảo
Ims RA, Ehrich D. Terrestrial ecosystems. In: Meltofte H, editor. Arctic biodiversity assessment. Status and trends in arctic biodiversity. Akureyri: Conservation of Arctic Flora and Fauna; 2013.
Forbes BC, Stammler F, Kumpula T, Meschtyb N, Pajunen A, Kaarlejärvi E. High resilience in the Yamal-Nenets social–ecological system, west Siberian Arctic. Russia PNAS. 2009;106(52):22041–8.
Hovelsrud GK, Poppel B, Oort BV, Reist JD. Arctic societies, cultures, and peoples in a changing cryosphere. Ambio. 2011;40(sup 1):100–10.
Huntington HP. Provisioning and cultural services. In: Meltofte H, editor. Arctic biodiversity assessment. Status and trends in arctic biodiversity. Akureyri: Conservation of Arctic Flora and Fauna; 2013.
Vuojala-Magga T, Turunen MT. Sámi reindeer herders’ perspective on herbivory of subarctic mountain birch forests by geometrid moths and reindeer: a case study from northernmost Finland. Springerplus. 2015;4(1):134.
Karlsen SR, Jepsen JU, Odland A, Ims RA, Elvebakk A. Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities. Oecologia. 2013;173(3):859–70.
Biuw M, Jepsen JU, Cohen J, Ahonen SH, Tejesvi M, Aikio S, Wali PR, Vindstad OPL, Markkola A, Niemela P, Ims RA. Long-term impacts of contrasting management of large ungulates in the Arctic tundra-forest ecotone: Ecosystem structure and climate feedback. Ecosystems. 2014;17(5):890–905.
Tuomi M, Väisänen M, Ylänne H, Brearley FQ, Barrio IC, Bråthen KA, Eischeid I, Forbes BC, Jónsdóttir IS, Kolstad AL. Stomping in silence: Conceptualizing trampling effects on soils in polar tundra. Funct Ecol. 2020;35:306–17.
Petit Bon M, Inga KG, Jónsdóttir IS, Utsi TA, Soininen EM, Bråthen KA. Interactions between winter and summer herbivory affect spatial and temporal plant nutrient dynamics in tundra grassland communities. Oikos. 2020;129:1229–42.
Bråthen K, Ims R, Yoccoz N, Fauchald P, Tveraa T, Hausner V. Induced shift in ecosystem productivity? Extensive scale effects of abundant large herbivores. Ecosystems. 2007;10(5):773–89.
Tuomi M, Stark S, Hoset KS, Väisänen M, Oksanen L, Murguzur FJ, Tuomisto H, Dahlgren J, Bråthen KA. Herbivore effects on ecosystem process rates in a low-productive system. Ecosystems. 2019;22(4):827–43.
Bråthen KA, Ravolainen VT, Stien A, Tveraa T, Ims RA. Rangifer management controls a climate-sensitive tundra state transition. Ecol Appl. 2017;27(8):2416–27.
Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O. Herbivores inhibit climate-driven shrub expansion on the tundra. Glob Change Biol. 2009;15(11):2681–93.
Wielgolaski FE, Hofgaard A, Holtmeier F-K. Sensitivity to environmental change of the treeline ecotone and its associated biodiversity in European mountains. Clim Res. 2017;73:151–66.
Maron JL, Crone E. Herbivory: effects on plant abundance, distribution and population growth. PRSB. 2006;273(1601):2575–84.
Moles AT, Bonser SP, Poore AG, Wallis IR, Foley WJ. Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol. 2011;25(2):380–8.
Olofsson J, Moen J, Oksanen L. Effects of herbivory on competition intensity in two arctic-alpine tundra communities with different productivity. Oikos. 2002;96(2):265–72.
Bernes C, Bråthen KA, Forbes BC, Speed JD, Moen J. What are the impacts of reindeer/caribou (Rangifer tarandus L.) on arctic and alpine vegetation? A systematic review. Environ Evid. 2015;4(1):4.
Hansen BB, Lorentzen JR, Welker JM, Varpe Ø, Aanes R, Beumer LT, Pedersen ÅØ. Reindeer turning maritime: Ice-locked tundra triggers changes in dietary niche utilization. Ecosphere. 2019;10(4):e02672.
Srivastava DS, Jefferies R. Mosaics of vegetation and soil salinity: a consequence of goose foraging in an arctic salt marsh. Can J Bot. 1995;73(1):75–83.
Hik D, Jefferies R. Increases in the net above-ground primary production of a salt-marsh forage grass: a test of the predictions of the herbivore-optimization model. J Ecol. 1990;78:180–95.
Tape KD, Jones BM, Arp CD, Nitze I, Grosse G. Tundra be dammed: beaver colonization of the Arctic. Glob Change Biol. 2018;24(10):4478–88.
Tape KD, Gustine DD, Ruess RW, Adams LG, Clark JA. Range expansion of moose in arctic Alaska linked to warming and increased Shrub Habitat. PLoS ONE. 2016;11(4):e0152636.
Vindstad OPL, Jepsen JU, Ek M, Pepi A, Ims RA. Can novel pest outbreaks drive ecosystem transitions in northern-boreal birch forest? J Ecol. 2019;107(3):1141–53.
Ravolainen VT, Brathen KA, Ims RA, Yoccoz NG, Henden JA, Killengreen ST. Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic Appl Ecol. 2011;12:643–53.
Barrio IC, Bueno CG, Gartzia M, Soininen EM, Christie KS, Speed J, Ravolainen V, Forbes BC, Gauthier G, Horstkotte T, Hoset KS, Høye TT, Jónsdóttir IS, Lévesque E, Mörsdorf M, Olofsson J, Wookey PA, Hik DS. Biotic interactions mediate patterns of herbivore diversity in the Arctic. Glob Ecol Biogeogr. 2016;25:1108–18.
Metcalfe DB, Hermans TD, Ahlstrand J, Becker M, Berggren M, Björk RG, Björkman MP, Blok D, Chaudhary N, Chisholm C. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecol Evol. 2018;2(9):1443–8.
Soininen EM, Barrio I, Jepsen JU, Ehrich D, Ravolainen VT, Speed JDM. Evidence of effects of herbivory on Arctic vegetation: a systematic map protocol. Env Evi. 2018;7(1):23.
Arctic Council, Conservation of Arctic Flora and Fauna Working Group. Boundary for Conservation of Arctic Flora and Fauna (CAFF) working group of the Arctic Council; 2017.
Arctic Biodiversity Assesment. Boundaries of the geographic area covered by the Arctic Biodiversity Assessment. Includes sub, low and high Arctic bounbaries; 2001. http://geo.abds.is/geonetwork/f0eb86a7-e408-4138-9432-dedb991f13d1. Accessed 23 Jun 2020.
Arctic Council, Conservation of Arctic Flora and Fauna Working Group, CAFF Map No.10—distribution of major vegetation zones and level of protection in the Arctic; 1996.
Cohen J. A coefficient of agreement for nominal scales. Educ Psych Meas. 1960;20:37–46.
McHugh ML. Interrater reliability: the kappa statistic. Bioch Med. 2012;22(3):276–82.
Haddaway NR, Macura B, Whaley P, Pullin AS. ROSES RepOrting standards for Systematic Evidence Syntheses: pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Env Evi. 2018;7:4–11.
Bernes C, Macura B, Jonsson BG, Junninen K, Müller J, Sandström J, Lõhmus A, Macdonald E. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates. A systematic review. Environ Evid. 2018;7(1):13.
Winston Chang, Joe Cheng, JJ Allaire, Xie Y, McPherson J. shiny: Web Application Framework for R. R package version 1.5.0; 2020.
Speed JD, Skjelbred IÅ, Barrio IC, Martin MD, Berteaux D, Bueno CG, Christie KS, Forbes BC, Forbey J, Fortin D. Trophic interactions and abiotic factors drive functional and phylogenetic structure of vertebrate herbivore communities across the Arctic tundra biome. Ecography. 2019;42(6):1152–63.
Brown J, Ferrians O, Heginbottom JA, Melnikov E. Circum-Arctic map of permafrost and ground-ice conditions, version 2. Boulder: NSIDC: National Snow and Ice Data Center; 2002.
FAO-UN—Land and Water Division (CBL), Digital soil map of the world; 2007.
Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11; 2018; Human population density; 2015. http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/. Accessed 21 Nov 2020.
Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Possingham HP, Laurance WF, Wood P, Fekete BM, Levy MA, Watson JE. Last of the wild project, version 3 (LWP-3): 2009 human footprint, 2018 release. Palisades: NASA Socioeconomic Data and Applications Center (SEDAC); 2018.
Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Possingham HP, Laurance WF, Wood P, Fekete BM, Levy MA, Watson JE. Global terrestrial human footprint maps for 1993 and 2009. Sci Data. 2016;3:160067.
Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE, Assmann JJ, John C, Andreu-Hayles L, Angers-Blondin S, Beck PS. Complexity revealed in the greening of the Arctic. Nature Clim Change. 2020;10(2):106–17.
Bety J, Graham-Sauve M, Legagneux P, Cadieux MC, Gauthier G. Fading indirect effects in a warming arctic tundra. Curr Zool. 2014;60(2):189–202.
Mosbacher JB, Michelsen A, Stelvig M, Hjermstad-Sollerud H, Schmidt NM. Muskoxen modify plant abundance, phenology, and nitrogen dynamics in a High Arctic fen. Ecosystems. 2019;22(5):1095–107.
Soininen EM, Hübner CE, Jonsdottir IS. Food selection by barnacle geese (Branta leucopsis) in an Arctic pre-breeding area. Polar Res. 2010;29(3):404–12.
Ravolainen VT, Bråthen KA, Yoccoz NG, Nguyen JK, Ims RA. Complementary impacts of small rodents and semi-domesticated ungulates limit tall shrub expansion in the tundra. J Appl Ecol. 2014;51(1):234–41.
Post E, Pedersen C. Opposing plant community responses to warming with and without herbivores. PNAS. 2008;105(34):12353–8.
Vowles T, Björk RG. Implications of evergreen shrub expansion in the Arctic. J Ecol. 2019;107(2):650–5.
Verma M, To Bühne HS, Lopes M, Ehrich D, Sokovnina S, Hofhuis SP, Pettorelli N. Can reindeer husbandry management slow down the shrubification of the Arctic? J Environ Manag. 2020;267:110636.
van der Wal R. Do herbivores cause habitat degradation or vegetation state transition? Evidence from the tundra. Oikos. 2006;114:177–86.
Cooper EJ, Smith FM, Wookey PA. Increased rainfall ameliorates the negative effect of trampling on the growth of High Arctic forage lichens. Symbiosis. 2001;31:153–71.
Heggenes J, Odland A, Chevalier T, Ahlberg J, Berg A, Larsson H, Bjerketvedt DK. Herbivore grazing—or trampling? Trampling effects by a large ungulate in cold high-latitude ecosystems. Ecol Evol. 2017;7(16):6423–31.
Alisauskas RT, Rockwell RF, Dufour KW, Cooch EG, Zimmerman G, Drake KL, Leafloor JO, Moser TJ, Reed ET. Harvest, survival, and abundance of midcontinent lesser snow geese relative to population reduction efforts. Wildl Monog. 2011;179(1):1–42.
Lefebvre J, Gauthier G, Giroux J-F, Reed A, Reed ET, Bélanger L. The greater snow goose Anser caerulescens atlanticus: managing an overabundant population. Ambio. 2017;46(2):262–74.
Madsen J, Williams JH, Johnson FA, Tombre IM, Dereliev S, Kuijken E. Implementation of the first adaptive management plan for a European migratory waterbird population: the case of the Svalbard pink-footed goose Anser brachyrhynchus. Ambio. 2017;46(2):275–89.
Speed JDM, Woodin SJ, Tommervik H, Tamstorf MP, Van der Wal R. Predicting habitat utilization and extent of ecosystem disturbance by an increasing herbivore population. Ecosystems. 2009;12:349–59.
Tape KD, Flint PL, Meixell BW, Gaglioti BV. Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska. Environ Res Lett. 2013;8(4):045031.
Doiron M, Gauthier G, Lévesque E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob Change Biol. 2015;21(12):4364–76.
Fauchald P, Park T, Tømmervik H, Myneni R, Hausner VH. Arctic greening from warming promotes declines in caribou populations. Sci Adv. 2017;3(4):e1601365.
Jepsen JU, Hagen SB, Ims RA, Yoccoz NG. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol. 2008;77(2):257–64.
Hansen BB, Pedersen ÅØ, Peeters B, Le Moullec M, Albon SD, Herfindal I, Sæther BE, Grøtan V, Aanes R. Spatial heterogeneity in climate change effects decouples the long-term dynamics of wild reindeer populations in the high Arctic. Glob Change Biol. 2019;25(11):3656–68.
Gauthier G, Bêty J, Cadieux MC, Legagneux P, Doiron M, Chevallier C, Lai S, Tarroux A, Berteaux D. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. PRSB. 2013;368:20120482.
Jepsen JU, Biuw M, Ims RA, Kapari L, Schott T, Vindstad OPL, Hagen SB. Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecotone. Ecosystems. 2013;16(4):561–75.
Barrio IC, Lindén E, Beest MT, Olofsson J, Rocha A, Soininen EM, Alatalo JM, Andersson T, Asmus A, Boike J, Bråthen KA, Bryant JP, Buchwal A, Bueno CG, Christie KS, Denisova YV, Egelkraut D, Ehrich D, Fishback LA, Forbes BC, Gartzia M, Grogan P, Hallinger M, Heijmans MMPD, Hik DS, Hofgaard A, Holmgren M, Høye TT, Huebner DC, Jónsdóttir IS, Kaarlejärvi E, Kumpula T, Lange CYMJG, Lange J, Lévesque E, Limpens J, Macias-Fauria M, Myers-Smith I, Nieukerken EJV, Normand S, Post ES, Schmidt NM, Sitters J, Skoracka A, Sokolov A, Sokolova N, Speed JDM, Street LE, Sundqvist MK, Suominen O, Tananaev N, Tremblay JP, Urbanowicz C, Uvarov SA, Watts D, Wilmking M, Wookey PA, Zimmermann HH, Zverev V, Kozlov MV. Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Pol Biol. 2017;40(11):2265–78.
Rheubottom SI, Barrio IC, Kozlov MV, Alatalo JM, Andersson T, Asmus AL, Baubin C, Brearley FQ, Egelkraut DD, Ehrich D, Gauthier G, Jónsdóttir IS, Konieczka S, Lévesque E, Olofsson J, Prevéy JS, G ST, Sokolov A, Sokolova N, Sokovnina S, Speed JDM, Suominen O, Zverev V, Hik DS. Hiding in the background: community-level patterns in invertebrate herbivory across the tundra biome. Pol Biol. 2019;42(10):1881–97.
Danks HV. Insect plant interactions in arctic regions. Rev d’Entomologie du Québec. 1986;31:52–75.
Haukioja E. Invertebrate herbivory at tundra sites. In: Bliss LC, Heal OW, Moore JJ, editors. Tundra ecosystems: a comparative analysis. New York: Cambridge University Press; 1981. p. 547–55.
Hansen J, Topp-Jørgensen E, Christensen TRE. Zackenberg Ecological research operations 21st annual report, 2015, Aarhus University, DCE—Danish Centre for Environment and Energy; 2017.
Kozlov MV, Filippov BY, Zubrij NA, Zverev V. Abrupt changes in invertebrate herbivory on woody plants at the forest–tundra ecotone. Pol Biol. 2015;38(7):967–74.
Kuczyński L, Skoracka A. Spatial distribution of galls caused by Aculus tetanothrix (Acari: Eriophyoidea) on arctic willows. Exp App Acar. 2005;36(4):277–89.
Jensen LM, Rasch M. Zackenberg ecological research operations, 15th annual report, 2009. 2010.
Lund M, Raundrup K, Westergaard-Nielsen A, López-Blanco E, Nymand J, Aastrup P. Larval outbreaks in West Greenland: instant and subsequent effects on tundra ecosystem productivity and CO 2 exchange. Ambio. 2017;46(1):26–38.
Kaukonen M, Ruotsalainen AL, Wäli PR, Männistö MK, Setälä H, Saravesi K, Huusko K, Markkola A. Moth herbivory enhances resource turnover in subarctic mountain birch forests? Ecology. 2013;94(2):267–72.
Schmidt NM, Hardwick B, Gilg O, Høye TT, Krogh PH, Meltofte H, Michelsen A, Mosbacher JB, Raundrup K, Reneerkens J, Stewart L, Wirta H, Roslin T. Interaction webs in arctic ecosystems: determinants of arctic change? Ambio. 2017;46(1):12–25.
Gillespie MA, Alfredsson M, Barrio IC, Bowden JJ, Convey P, Culler LE, Coulson SJ, Krogh PH, Koltz AM, Koponen S, Loboda S. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio. 2020;49(3):718–31.
Olofsson J. Short- and long-term effects of changes in reindeer grazing pressure on tundra heath vegetation. J Ecol. 2006;94(2):431–40.
Francini G, Liiri M, Männistö M, Stark S, Kytöviita M-M. Response to reindeer grazing removal depends on soil characteristics in low Arctic meadows. Appl Soil Ecol. 2014;76:14–25.
Wheeler JA, Hermanutz L, Marino PM. Feathermoss seedbeds facilitate black spruce seedling recruitment in the forest–tundra ecotone (Labrador, Canada). Oikos. 2011;120(8):1263–71.
Vicca S, Gilgen AK, Camino Serrano M, Dreesen F, Dukes J, Estiarte M, Gray S, Guidolotti G, Hoeppner S, Leakey A. Urgent need for a common metric to make precipitation manipulation experiments comparable. New Phytol. 2012;195(3):518–22.
Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, Smith MD. Finding generality in ecology: a model for globally distributed experiments. Met Ecol and Evol. 2014;5(1):65–73.
Barrio I, Hik D, Jónsdóttir I, Bueno C, Mörsdorf M, Ravolainen V. Herbivory network: an international, collaborative effort to study herbivory in Arctic and alpine ecosystems. Pol Sci. 2016;10(3):297–302.
Barrio IC, Ehrich D, Soininen EM, Ravolainen VT, Bueno CG, Gilg O, Koltz AM, Speed JDM, Hik DS, Mörsdorf M, Alatalo JM, Angerbjörn A, Bêty J, Bollache L, Boulanger-Lapointe N, Brown GS, Eischeid I, Giroux MA, Hájek T, Hansen BB, Hofhuis S, Lamarre J-F, Lang J, Latty C, Lecomte N, Macek P, McKinnon L, Myers-Smith HI, Pedersen ÅØ, Prevéy JS, Roth JD, Saalfeld ST, Schmidt NM, Smith P, Sokolov A, Sokolova N, Stolz C, van Bemmelen R, Varpe D, Woodard PF, Jónsdóttir IS. Developing common protocols to measure tundra herbivory across spatial scales. Arc Sci. e-First. https://doi.org/10.1139/as-2020-0020
Haddaway NR, Verhoeven JTA. Poor methodological detail precludes experimental repeatability and hampers synthesis in ecology. Ecol Evo. 2015;5(19):4451–4.
Gerstner K, Moreno-Mateos D, Gurevitch J, Beckmann M, Kambach S, Jones HP, Seppelt R. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Met Ecol Evol. 2017;8(6):777–84.
Parker TH, Forstmeier W, Koricheva J, Fidler F, Hadfield JD, Chee YE, Kelly CD, Gurevitch J, Nakagawa S. Transparency in ecology and evolution: real problems, real solutions. TREE. 2016;31(9):711–9.
Schmidt NM, Reneerkens J, Christensen JH, Olesen M, Roslin T. An ecosystem-wide reproductive failure with more snow in the Arctic. Plos Biol. 2019;17(10):e3000392.
Descamps S, Aars J, Fuglei E, Kovacs KM, Lydersen C, Pavlova O, Pedersen ÅØ, Ravolainen V, Strøm H. Climate change impacts on wildlife in a High Arctic archipelago–Svalbard. Norway Glob Ch Biol. 2017;23(2):490–502.
Cooper EJ. Warmer shorter winters disrupt Arctic terrestrial ecosystems. Ann Rev Ecol Evol Syst. 2014;45:271–95.
Lembrechts J, van den Hoogen J, Aalto J, Ashcroft M, De Frenne P, Kemppinen J, … Lenoir J. Mismatches between soil and air temperature. EcoEvoRxiv Preprints; 2021.
Jarvis A, Reuter HI, Nelson A, Guevara E. Hole-filled seamless SRTM data V4. In: International centre for tropical agriculture (CIAT); 2008. https://srtm.csi.cgiar.org. Accessed 10 Mar 2021.
Walker DA, Raynolds MK, Daniels FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA, Team C. The circumpolar Arctic vegetation map. J Veg Sci. 2005;16:267–82.
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Clim. 2017;37(12):4302.
Park T, Ganguly S, Tømmervik H, Euskirchen ES, Høgda K-A, Karlsen SR, Brovkin V, Nemani RR, Myneni RB. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ Res Lett. 2016;11(8):084001.
GISTEMP Team, GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies; 2016.
Hansen J, Ruedy R, Sato M, Lo K. Global surface temperature change. Rev Geophys. 2010. https://doi.org/10.1029/2010RG000345.
Haddaway N, Macura B, Whaley P, Pullin A. ROSES flow diagram for systematic maps. Version 1.0; 2017. https://doi.org/10.6084/m9.figshare.6085940