Locating the peaks of least-energy solutions to a semilinear Neumann problem
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] C.-C. Chen and C. S. Lin, <i>Uniqueness of the ground state solutions of $\Delta u+f(u)=0$ in $\bf R\sp n,\;n\geq 3$</i>, Comm. Partial Differential Equations <b>16</b> (1991), no. 8-9, 1549–1572.
[2] B. Gidas, W.-M. Ni, and L. Nirenberg, <i>Symmetry of positive solutions of nonlinear elliptic equations in $\bf R\spn$</i>, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 369–402.
[3] D. Gilbarg and N. S. Trudinger, <i>Elliptic partial differential equations of second order</i>, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983.
[4] L. Hörmander, <i>Estimates for translation invariant operators in $L\spp$ spaces</i>, Acta Math. <b>104</b> (1960), 93–140.
[5] A. I. Košelev, <i>A priori estimates in $L_p$ and generalized solutions of elliptic equations and systems</i>, Six Papers on Partial Differential Equations, Amer. Math. Soc. Transl. (2), vol. 20, Amer. Math. Soc., Providence, 1962, pp. 105–171.
[6] M. K. Kwong and L. Q. Zhang, <i>Uniqueness of the positive solution of $\Delta u+f(u)=0$ in an annulus</i>, Differential Integral Equations <b>4</b> (1991), no. 3, 583–599.
[7] C.-S. Lin, W.-M. Ni, and I. Takagi, <i>Large amplitude stationary solutions to a chemotaxis system</i>, J. Differential Equations <b>72</b> (1988), no. 1, 1–27.
[8] W.-M. Ni, X.-B. Pan, and I. Takagi, <i>Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents</i>, Duke Math. J. <b>67</b> (1992), no. 1, 1–20.
[9] W.-M. Ni and I. Takagi, <i>On the shape of least-energy solutions to a semilinear Neumann problem</i>, Comm. Pure Appl. Math. <b>44</b> (1991), no. 7, 819–851.