Locally nilpotent topological groups with Abelian subgroups of finite rank

Springer Science and Business Media LLC - Tập 34 - Trang 470-475 - 1982
Yu. N. Pilipenko1, V. M. Poletskikh1
1Kiev State University, USSR

Tài liệu tham khảo

V. S. Charin, “Groups of finite rank. II,” Ukr. Mat. Zh.,18, No. 3, 85–96 (1966). Yu. I. Merzlyakov, “Locally solvable groups of finite rank,” Algebra Logika,3, No. 2, 5–16 (1964). V. M. Poletskikh, “Locally compact, locally nilpotent groups satisfying the inductive condition for isolated subgroups,” Sib. Mat. Zh.,17, No. 5 (1976). V. M. Poletskikh, “The topological isolator of a subgroup of finite rank,” Ukr. Mat. Zh.,29, No. 5, 614–624 (1977). V. M. Glushkov, “Some questions in the theory of nilpotent and locally nilpotent torsion-free groups,” Mat. Sb.,30, No. 1, 79–104 (1952). V. M. Poletskikh and V. S. Charin, “A class of locally compact, solvable groups,” Visn. Kiiv Univ., Ser. Mat. Mekh., No. 20, 98–108 (1978). V. M. Poletskikh, “An open mapping,” Ukr. Mat. Zh.,31, No. 6 (1979). A. G. Kurosh, Group Theory, Chelsea Pub. (1979). N. Ya. Vilenkin, “Theory of topological groups. II,” Usp. Mat. Nauk,5, No. 4, 19–73 (1950). B. A. Pasynkov, “Inverse spectra and dimension,” Dokl. Akad. Nauk SSSR,138, No. 5, 1013–1015 (1961). N. F. Sesekin, “Locally nilpotent, torsion-free groups,” Mat. Sb.,32, No. 2, 407–442 (1953). E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Academic Press, New York (1963). V. S. Charin, “Some classes of locally bicompact groups satisfying the maximum condition for Abelian subgroups,” Sib. Mat. Zh.,5, No. 2, 438–458 (1964).