Localizing Vector Optimization Problems with Application to Welfare Economics

Springer Science and Business Media LLC - Tập 22 - Trang 483-501 - 2013
Amos Uderzo1
1Department of Mathematics and Applications, University of Milano-Bicocca, Milano, Italy

Tóm tắt

In the present paper, the Polyak’s principle, concerning convexity of the images of small balls through C1, 1 mappings, is employed in the study of vector optimization problems. This leads to extend to such a context achievements of local programming, an approach to nonlinear optimization, due to B.T. Polyak, which consists in exploiting the benefits of the convex local behaviour of certain nonconvex problems. In doing so, solution existence and optimality conditions are established for localizations of vector optimization problems, whose data satisfy proper assumptions. Such results are subsequently applied in the analysis of welfare economics, in the case of an exchange economy model with infinite-dimensional commodity space. In such a setting, the localization of an economy yields existence of Pareto optimal allocations, which, under certain additional assumptions, lead to competitive equilibria.

Tài liệu tham khảo

Aliprantis, C.D., Cornet, B., Tourky, R.: Economic equilibrium: optimality and price decentralization. Positivity 6, 205–241 (2002) Arrow, K.J.: An extension of the basic theorems of classical welfare economics. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 507–532. University of California Press, Berkeley (1951) Aubin, J.-P.: Optima and Equilibria. Springer-Verlag, Berlin (1998) Banakh, I., Banakh, T., Plichko, A., Prykarpatsky, A.: On local convexity of nonlinear mappings between Banach spaces. Cent. Eur. J. Math. 10(6), 2264–2271 (2012) Bao, T.Q., Mordukhovich, B.S.: Set-valued optimization in welfare economics. Adv. Math. Econom. 13, 113–153 (2010) Bonisseau, J.M., Cornet, B.: Valuation equilibrium and Pareto optimum in nonconvex economies. General equilibrium theory and increasing returns. J. Math. Econom 17(2–3), 293–308 (1988) Clarkson, J.A.: Uniformly convex spaces. Trans. Am. Math. Soc 40(3), 396–414 (1936) Day, M.M.: Reflexive Banach spaces not isomorphic to uniformly convex spaces. Bull. Am. Math. Soc. 47, 313–317 (1941) Debreu, G.: Valuation equilibrium and Pareto optimum. Proc. Nat. Acad. Sci. U.S.A. 40 (1954) Debreu, G.: Smooth preferences. Econometrica 40(4), 603–615 (1972) Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Pelant, J., Zizler, V.: Functional analysis and infinite-dimensional geometry. Springer-Verlag, New York (2001) Fabian, M., Whitfield, J.H.M., Zizler, V.: Norms with locally Lipschitzian derivatives. Israel J. Math. 44(3), 262–276 (1983) Florenzano, M., Gourdel, P., Jofré, A.: Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies. Econom. Theory 29(3), 549–564 (2006) Guesnerie, R.: Pareto optimality in non-convex economies. Econometrica 43(1), 1–29 (1975) Jahn, J.: Vector Optimization. Springer-Verlag, Berlin (2004) Jofré, A.: A second-welfare theorem in nonconvex economies, In: Constructive, Experimental, and Nonlinear Analysis (Limoges, 1999), CMS Conf., Proc., vol. 27, pp. 175-184. Amer. Math. Soc., Providence(2000) Megginson, R.E.: An Introduction to Banach Space Theory. Springer-Verlag, New York (1998) Malcolm, G.G., Mordukhovich, B.S.: Pareto optimality in nonconvex economies with infinite-dimensional commodity spaces. J. Global Optim. 20(3–4), 323–346 (2001) Mordukhovich, B.S.: An abstract extremal principle with applications to welfare economics. J. Math. Anal. Appl. 251(1), 187–216 (2000) Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer-Verlag, Berlin Heidelberg (2006) Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II: Applications. Springer-Verlag, Berlin Heidelberg (2006) Nordlander, G.: The modulus of convexity in normed linear spaces. Ark. Mat. 4, 15–17 (1960) Polyak, B.T.: Convexity of nonlinear image of a small ball with applications to optimization. Set-Valued Anal. 9(1–2), 159–168 (2001) Polyak, B.T.: Local programming, Zh. Vychisl. Mat. Mat. Fiz. 41(9), 1324–1331 (2001) [in Russian], translation in Comput. Math. Math. Phys. 41(9), 1259–1266 (2001) Polyak, B.T.: The convexity principle and its applications. Bull. Braz. Math. Soc. (N.S.) 34(1), 59–75 (2003) Uderzo, A.: On the Polyak convexity principle and its application to variational analysis. Nonlinear Anal. 91(2013), 60–71 (2013). doi:10.1016/j.na.2013.06.009