Localized discrete breather modes in neuronal microtubules

Springer Science and Business Media LLC - Tập 88 - Trang 2013-2033 - 2017
L. Kavitha1,2, E. Parasuraman3, A. Muniyappan3, D. Gopi4, S. Zdravković5
1Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu (CUTN), Thiruvarur, India
2The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
3Department of Physics, Periyar University, Salem, India
4Department of Chemistry, Periyar University, Salem, India
5Institut za nuklearne nauke Vinča, Univerzitet u Beogradu, Beograd, Serbia

Tóm tắt

We made an attempt to provide a realistic picture of the localization of energy in microtubules (MTs), and we intend to model the nonlinear dynamics of MTs using the “double-well” $$\phi ^4$$ form of the potential describing the dipole–dipole interactions. We investigate the modulational instability (MI) of the nonlinear plane wave solutions by considering both the wave vector (q) of the basic states and the wave vector (Q) of the perturbations as free parameters. A set of explicit criteria of MI is derived, and under the plane-wave perturbation, the constant amplitude solution becomes unstable and localized discrete breathers (DBs) solutions appear. We show numerically that MI is also an indicator of the presence of discrete breathers. We suggest that an electric field favourably leads the DB excitations towards the properly aligned end triggering a dissembly of the protofilament due to the energy release. These DBs could catalyse MT-associated proteins attachment/detachment and promote or inhibit the kinesin walk. We establish that the electromechanical vibrations in MTs can generate an electromagnetic field in the form of an electric pulse (breathers) which propagates along MT serving as signalling pathway in neuronal cells. The DBs in MT can be viewed as a bit of information whose propagation can be controlled by an electric filed. They might perform the role of elementary logic gates, thus implementing a subneuronal mode of computation. The generated DBs present us with novel possibilities for the direct interaction between the local electromagnetic field and the cytoskeletal structures in neurons. Thus, we emphasize that the effect of discreteness and electric field plays a significant role in MTs.

Tài liệu tham khảo

Hyams, J.S., Lloyd, C.W.: Microtubules. Wiley, New York (1994) Kirschner, M., Mitchison, T.: Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986) Mitchison, T., Kirschner, M.: Dynamic instability of microtubule growth. Nature 312, 237–242 (1984) Lodish, H., Berk, A., Zipuski, S.L., Matsudaira, P., Baltimore, D., Darnell, J.: Molecular Cell Biology, 4th edn. Freeman, San Fransisco (2000) Ouakad, H.M., Younis, M.I.: Dynamic response of slacked single-walled carbon nanotube resonators. Nonlinear Dyn. 67, 1419–1436 (2012) Oosawa, F., Asakura, S.: Thermodynamic of the Polymerization of Protein. Academic Press, London (1975) Johnson, K.A., Borisy, G.G.: Thermodynamic analysis of microtubule self-assembly in vitro. Mol. Biol. 133, 199–216 (1979) Desai, A., Mitchison, T.J.: Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997) Haghshenas-Jaryani, M., Black, B., Ghaffari, S., Drake, J., Bowling, A., Mohanty, S.: Dynamics of microscopic objects in optical tweezers: experimental determination of underdamped regime and numerical simulation using multiscale analysis. Nonlinear Dyn. 76, 1013–1030 (2014) Holy, T.E., Leibler, S.: Dynamic instability of microtubules as an efficient way to search in space. Proc. Natl. Acad. Sci. USA 91, 5682–5685 (1994) Wittmann, T., Waterman-Storer, C.M.: Cell motility: can Rho GTPases and microtubules point the way? J. Cell Sci. 114, 3795–3803 (2001) Horio, T., Hotani, H.: Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321, 605–607 (1986) Komarova, Y.A., Vorobjev, I.A., Borisy, G.G.: Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J. Cell Sci. 115, 3527–3539 (2002) Drummond, D.R., Cross, R.A.: Dynamics of interphase microtubules in \(<\) i \(>\) Schizosaccharomyces pombe \(<\) /i \(>\). Curr. Biol. 10, 766–775 (2000) Straube, A.: How to measure microtubule dynamics? Mol. Biol. 777, 1–14 (2011) van der Vaart, B., Akhmanova, A., Straube, A.: Regulation of microtubule dynamic instability. Biochem. Soc. Trans. 37, 1007–1013 (2009) Pokorneý, J.: Excitation of vibrations in microtubules in living cells. Bioelectrochemistry 63, 321–326 (2004) Pokorný, J.: Conditions for coherent vibrations in the cytoskeleton. Bioelectrochem. Bioenerg. 48, 267–271 (1999) Whitham, G.B.: Non-linear dispersive waves. Proc. R. Soc. Lond. A 283, 238–261 (1965) Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, San Diego (1989) Battelli, F., Diblík, J., Fe\(\breve{{\rm c}}\)kan, M., Pickton, J., Pospí\(\breve{{\rm s}}\)il, M., Susanto, H.: Dynamics of generalized PT-symmetric dimers with time-periodic gain–loss. Nonlinear Dyn. 81, 353–371 (2015) Hendricks, A.G., Epureanu, B.I., Meyhfer, E.: Mechanistic mathematical model of kinesin under time and space fluctuating loads. Nonlinear Dyn. 53, 303–320 (2008) Ansari, R., Ramezannezhad, H., Gholami, R.: Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment. Nonlinear Dyn. 67, 2241–2254 (2012) Chretien, D., Fuller, S.D., Karsenti, E.: Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell. Biol. 129, 1311–1328 (1995) Glauber, R.: Coherent and incoherent states of the radiation field. J Phys. Rev. 131, 2766 (1963) Daniel, M., Kavitha, L., Amuda, R.: Soliton spin excitations in an anisotropic Heisenberg ferromagnet with octupole–dipole interaction. Phys. Rev. B 59, 13774 (1999) Cuevas, J., Archilla, J.F.R., Romero, F.R.: Stability of non-time-reversible phonobreathers. J. Phys. A Math. Theor. 44, 035102 (2011) Campbell, D.K., Flach, S., Kivshar, Y.S.: Localizing energy through nonlinearity and discreteness. Phys. Today 57, 43 (2004) Yi, X., Wattis, J.A.D., Susanto, H., Cummings, L.J.: Discrete breathers in a two-dimensional spring-mass lattice. J. Phys. A Math. Theor. 42, 355207 (2009) Kosevich, A.M., Kovalev, A.S.: Self-localization of vibrations in a one-dimensional anharmonic chain. Zh. Eksp. Teor. Fiz. 67, 1793–1804 (1974) Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970 (1988) MacKay, R.S., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623 (1994) Daumont, I., Dauxois, T., Peyrard, M.: Modulational instability: first step towards energy localization in nonlinear lattices. Nonlinearity 10, 617–630 (1997) Dauxois, T., Peyrard, M.: Energy localization in nonlinear lattices. Phys. Rev. Lett. 70, 3935 (1993) Kavitha, L., Muniyappan, A., Prabhu, A., Zdravković, S., Jayanthi, S., Gopi, D.: Nano breathers and molecular dynamics simulations in hydrogen-bonded chains. J. Biol. Phys. 39, 15–35 (2013) Kivshar, Y.S., Peyrard, M.: Modulational instabilities in discrete lattices. Phys. Rev. A 46, 3198 (1992) Ablowitz, M.J., Clarkson, P.A.: Solitons: nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge (1991) Miura, M.R.: B\({\ddot{{\rm a}}}\)cklund Transformation. Springer, Berlin (1978) Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and Its Geometric Applications. Shanghai Scientific and Technical Publishers, Shanghai (1999) Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095 (1967) Kavitha, L., Saravanan, M., Akila, N., Bhuvaneswari, S., Gopi, D.: Solitonic transport of energy–momentum in a deformed magnetic medium. Phys. Scr. 85, 035007 (2012) Kavitha, L., Sathishkumar, P., Gopi, D.: Soliton-based logic gates using spin ladder. Commun. Nonlinear Sci. Numer. Simul. 15, 3900–3912 (2010) Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971) Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992) Inc, M., Fan, E.G.: Extended tanh-function method for finding travelling wave solutions of some nonlinear partial differential equations. Z. Naturforsch. 60, 7 (2005) Kavitha, L., Akila, N., Prabhu, A., Kuzmanovska-Barandovska, O., Gopi, D.: Exact solitary solutions of an inhomogeneous modified nonlinear Schr\({\ddot{o}}\)dingerequation with competing nonlinearities. Math. Comput. Model 53, 1095–1110 (2011) Kavitha, L., Srividya, B., Gopi, D.: Effect of nonlinear inhomogeneity on the creation and annihilation of magnetic soliton. J. Magn. Magn. Mater 322, 1793–1810 (2010) Kavitha, L., Srividya, B., Akila, N., Gopi, D.: Shape changing solitary solutions of a nonlocally damped nonlinear Schr\({\ddot{o}}\)dinger equation using symbolic computation. Nonlinear Sci. Lett. A 1, 95–107 (2010) Kavitha, L., Sathishkumar, P., Gopi, D.: Energy-momentum transport through soliton in a site-dependent ferromagnet. Commun. Nonlinear Sci. Numer. Simul. 16, 1787–1803 (2011) Kavitha, L., Venkatesh, M., Jayanthi, S., Gopi, D.: Propagation of proton solitons in hydrogen-bonded chains with an asymmetric double-well potential. Phys. Scr. 86, 025403 (2012) Zdravković, S., Kavitha, L., Satarić, M.V., Zeković, S., Petrović, J.: Modified extended tanh-function method and nonlinear dynamics of microtubules. Chaos Solitons Fractals 45, 1378–1386 (2012) Kavitha, L., Prabhu, A., Gopi, D.: New exact shape changing solitary solutions of a generalized Hirota equation with nonlinear inhomogeneities. Chaos Solitons Fractals 42, 2322 (2009) Kavitha, L., Sathishkumar, P., Gopi, D.: Shape changing soliton in a site-dependent ferromagnet using tanh-function method. Phys. Scr. 79, 015402 (2009) Dai, C., Ni, Y.: The application of extended tanh-function approach in Toda lattice equations. Int. J. Theor. Phys. 46, 1455–1465 (2007) Yan, Z.Y.: Abundant families of Jacobi elliptic function solutions of the (2 + 1)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos Solitons Fractals 18, 299–309 (2003) Kavitha, L., Saravanan, M., Srividya, B., Gopi, D.: Breatherlike electromagnetic wave propagation in an antiferromagnetic medium with Dzyaloshinsky–Moriya interaction. Phys. Rev. E 84, 066608 (2011) Kavitha, L., Parasuraman, E., Venkatesh, M., Mohamadou, A., Gopi, D.: Breather-like protonic tunneling in a discrete hydrogen bonded chain with heavy-ionic interactions. Phys. Scr. 87, 035007 (2013) Zeković, S., Muniyappan, A., Zdravković, S., Kavitha, L.: Employment of Jacobian elliptic functions for solving problems in nonlinear dynamics of microtubules. Chin. Phys. B 23, 020504 (2014) He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700 (2006) He, J.H., Abdou, M.A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Solitons Fractals 34, 1421–1429 (2007) Wu, X.H., He, J.H.: Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method. Comput. Math. Appl. 54, 966–986 (2007) Bekir, A., Boz, A.: Exact solutions for a class of nonlinear partial differential equations using Exp-function method. Int. J. Nonlinear Sci. Numer. Simul. 8, 505 (2007) Kavitha, L., Srividya, B., Gopi, D.: Exact propagating dromion-like localized wave solutions of generalized (2 + 1)-dimensional Davey–Stewartson equations. Comput. Math. Appl. 62, 4691 (2011) Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Nonlinear Mech. 31, 329–338 (1996) Gao, Y.T., Tian, B.: Generalized tanh method with symbolic computation and generalized shallow water wave equation. Comput. Math. Appl. 33, 115–118 (1997) Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000) Kuang, J.L., Leung, A.Y.T.: Chaotic flexural oscillations of a spinning nanoresonator. Nonlinear Dyn. 51, 9–29 (2008) Elwakil, S.A., El-labany, S.K., Zahran, M.A., Sabry, R.: Modified extended tanh-function method for solving nonlinear partial differential equations. Phys. Lett. A 299, 179–188 (2002) L\({\ddot{u}}\), Z.S., Zhang, H.Q, : On a new modified extended tan\(h\)-function method. Commun. Theor. Phys. 39, 405–408 (2003) Dai, C.Q., Zhang, J.F.: Exact solutions of discrete complex cubicquintic Ginzburg–Landau equation with non-local quintic term. Commun. Theor. Phys. 46, 23 (2006) Wang, Z., Zhang, H.Q.: Soliton-like and periodic form solutions to (2 + 1)-dimensional Toda equation. Chaos Solitons Fractals 31, 197–204 (2007) Wang, Z.: Discrete tanh method for nonlinear difference-differential equations. Comput. Phys. Commun. 180, 1104–1108 (2009) Dai, Z., Liu, J., Liu, Z.: Exact periodic kink-wave and degenerative soliton solutions for potential Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 15, 2331–2336 (2010) Khawaja, U.Al, Bahlouli, H., Asad-uz-zaman, M., Al-Marzoug, S.M.: Modulational instability analysis of the Peregrine soliton. Commun. Nonlinear Sci. Numer. Simul. 19, 2706–2714 (2014) Biswas, A., Milovic, D.: Bright and dark solitons of the generalized nonlinear Schr\({\ddot{o}}\)dinger equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1473–1484 (2010) Purich, D.L.: Enzyme catalysis: a new definition accounting for noncovalent substrate and product-like states. Trends Biochem. Sci. 26, 417–421 (2001) Witte, H., Neukirchen, D., Bradke, F.: Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180, 619–632 (2008) Wang, P., Zhang, Y., Lü, J., Yu, X.: Functional characteristics of additional positive feedback in genetic circuits. Nonlinear Dyn. 79, 397–408 (2015) Hirokawa, N., Takemura, R.: Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201–214 (2005)