Localized Probing of Phase Transitions in Nanoscale Polymers by Using the Thermoplasmonic Metasurface

E. A. Chernykh1, S. S. Kharintsev1
1Kazan (Volga Region) Federal University, Kazan, Russia

Tóm tắt

Under the action of light under the conditions of plasmon resonance, metal nanoparticles induce nanoscale heating. This effect forms the basis for thermoplasmon probing of phase changes occurring in the nanoscale systems whose investigation is the key problem in the modern materials science. Despite an evident simplicity of such an approach, intensive absorption of light by resonance nanostructures does not ensure the desired optical heating in the cases when the thermal conduction of the medium significantly exceeds that of the plasmonic nanostructure. We propose the approach to creation of the controlled heating of plasmonic nanostructures by nanostructuring the thermostat surface, which is demonstrated with the help of the thermoplasmonic metasurface, which is an array of TiN:Si voxels—the vertical system of nanostructures of titanium nitride (TiN) and silicon (Si) on a silicon substrate. The plasmonic nanostructures of TiN play the role of nanoheaters, while varying the height of silicon thermal conductors makes it possible to control the temperature of heating of the voxels at a fixed value of pump intensity owing to the control of heat localization. The possibility of probing phase transitions in the nanoscale systems is demonstrated by an example of thin polymer films with the use of thermoplasmonic metasurface and Raman spectroscopy.

Tài liệu tham khảo

B. Li, Sh. Zhang, J. S. Andre, and Zh. Chen, ‘‘Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement,’’ Progr. Polym. Sci. 120, 101431 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101431 K. M. Mayer and J. H. Hafner, ‘‘Localized surface plasmon resonance sensors,’’ Chem. Rev. 111, 3828–3857 (2011). https://doi.org/10.1021/cr100313v H. Duan, T. Wang, Z. Su, H. Pang, and Ch. Chen, ‘‘Recent progress and challenges in plasmonic nanomaterials,’’ Nanotech. Rev. 11, 846–873 (2022). https://doi.org/10.1515/ntrev-2022-0039 D. M. Kim, J. S. Park, S.-W. Jung, J. Yeom, and S. M. Yoo, ‘‘Biosensing applications using nanostructure-based localized surface plasmon resonance sensors,’’ Sensors 21, 3191 (2021). https://doi.org/10.3390/s21093191 F. Gu, H. Zeng, L. Tong, and S. Zhuang, ‘‘Metal single-nanowire plasmonic sensors,’’ Opt. Lett. 38, 1826–18288 (2013). https://doi.org/10.1364/OL.38.001826 M. Wan, P. Luo, J. Jin, J. Xing, Zh. Wang, and S. T. C. Wong, ‘‘Fabrication of localized surface plasmon resonance fiber probes using ionic self-assembled gold nanoparticles,’’ Sensors 10, 6477–6487 (2010). https://doi.org/10.3390/s100706477 H.-M. Kim, J.-H. Park, and S.-K. Lee, ‘‘Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor,’’ Sci. Rep. 9, 15605 (2019). https://doi.org/10.1038/s41598-019-52056-1 G. Baffou and R. Quidant, ‘‘Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat,’’ Laser Photon. Rev. 7, 171–187 (2013). https://doi.org/10.1002/lpor.201200003 C. Paqueta and E. Kumacheva, ‘‘Nanostructured polymers for photonics,’’ Materials Today 11, 48–56 (2008). https://doi.org/10.1016/S1369-7021(08)70056-7 D. G. Haywood, A. Saha-Shah, L. A. Baker, and S. C. Jacobson, ‘‘Fundamental studies of nanofluidics: Nanopores, nanochannels, and nanopipets,’’ Analyt. Chem. 87, 172–187 (2015). https://doi.org/10.1021/ac504180h F. A. A. Nugroho, D. Albinsson, T. J. Antosiewicz, and Ch. Langhammer, ‘‘Plasmonic metasurface for spatially resolved optical sensing in three dimensions,’’ ACS Nano 14, 2345–2353 (2020). https://doi.org/10.1021/acsnano.9b09508 S. S. Kharintsev, E. A. Chernykh, A. V. Shelaev, and S. G. Kazarian, ‘‘Nanoscale sensing vitrification of 3D confined glassy polymers through refractory thermoplasmonics,’’ ACS Photonics 8, 1477–1488 (2021). https://doi.org/10.1021/acsphotonics.1c00256 G. V. Naik, V. M. Shalaev, and A. Boltasseva, ‘‘Alternative plasmonic materials: beyond gold and silver,’’ Adv. Mater. 2, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076 E. Chernykh, S. Kharintsev, A. Fishman, A. Alekseev, and M. Salakhov, ‘‘Determination of the glass transition temperature of freestanding and supported azo-polymer thin films by thermal assisted atomic force microscopy,’’ EPJ Web Conf. 139, 00007 (2017). https://doi.org/10.1051/epjconf/201713900007 L. Jauffred, A. Samadi, H. Klingberg, P. M. Bendix, and L. B. Oddershede, ‘‘Plasmonic heating of nanostructures,’’ Chem. Rev. 119, 8087–8130 (2019). https://doi.org/10.1021/acs.chemrev.8b00738 Sh. Xu, A. Fan, H. Wang, X. Zhang, and X. Wang, ‘‘Raman-based nanoscale thermal transport characterization: A critical review,’’ Int. J. Heat Mass Transfer 154, 119751 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119751 E. A. Chernykh, A. N. Filippov, A. M. Alekseev, M. A. Makhiboroda, and S. S. Kharintsev, ‘‘Optical heating controlled with a thermoplasmonic metasurface,’’ J. Phys.: Conf. Ser. 2015, 012029 (2021). https://doi.org/10.1088/1742-6596/2015/1/012029 A. V. Kazantseva, E. A. Chernykh, C. Crook, E. P. Garcia, D. A. Fishmn, E. O. Potma, L. Valdevit, S. S. Kharintsev, and T. Baldacchini, ‘‘Nanoscale investigation of two-photon polymerized microstructures with tip-enhanced Raman spectroscopy,’’ J. Phys. Photonics 3, 024001 (2021). https://doi.org/10.1088/2515-7647/abdcba H. Liem, J. Cabanillas-Gonzalez, P. Etchegoin, and D. D. C. Bradley, ‘‘Glass transition temperatures of polymer thin films monitored by Raman scattering,’’ J. Phys. Condens. Matter. 16, 721 (2004). https://doi.org/10.1088/0953-8984/16/6/003 S. S. Kharintsev, A. I. Fishman, S. K. Saikin, and S. G. Kazarian, ‘‘Near-field Raman dichroism of azo-polymers exposed to nanoscale dc electrical and optical poling,’’ Nanoscale 8, 19867 (2016). https://doi.org/10.1039/C6NR07508H S. L. Mikerin, A. I. Plekhanov, A. E. Simanchuk, A. V. Yakimanskii, A. A. Martynenkov, and N. A. Valisheva, ‘‘Compact amplitude electro-optic modulator based on chromophore-containing polyimides,’’ Optoelectron., Instrum. Data Process. 54, 385–389 (2018). https://doi.org/10.3103/S8756699018040106