Localizations of a Ring at Localizable Sets, their Groups of Units and Saturations
Tóm tắt
We continue to develop the most general theory of one-sided fractions started in Bavula (Localizable sets and the localization of a ring at a localizable set. arXiv:2112.13447 ). The aim of the paper is to introduce 10 types of saturations of a set in a ring and using them to study localizations of a ring at localizable sets, their groups of units and various maximal localizable sets satisfying some natural conditions. The results are obtained for denominator sets (the classical situation), Ore sets and localizable sets.
Tài liệu tham khảo
citation_journal_title=J. Pure Appl. Algebra; citation_title=The algebra of one-sided inverses of a polynomial algebra; citation_author=VV Bavula; citation_volume=214; citation_publication_date=2010; citation_pages=1874-1897; citation_doi=10.1016/j.jpaa.2009.12.033; citation_id=CR1
citation_journal_title=Commun. Algebra; citation_title=The largest left quotient ring of a ring; citation_author=VV Bavula; citation_volume=44; citation_issue=8; citation_publication_date=2016; citation_pages=3219-3261; citation_doi=10.1080/00927872.2015.1082577; citation_id=CR2
Bavula, V.V.: Localizable sets and the localization of a ring at a localizable set.
arXiv:2112.13447
citation_journal_title=J. Symbolic Comp.; citation_title=Constructive arithmatic in Ore localizations of domains; citation_author=J Hoffmann, V Levandovskyy; citation_volume=98; citation_publication_date=2020; citation_pages=23-46; citation_doi=10.1016/j.jsc.2019.07.005; citation_id=CR4
Jacobson, N.: Structure of rings. Am. Math. Soc. Colloq., Vol. XXXVII (rev. ed.), Am. Math. Soc., Providence (1968)
