Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy

Journal of Invertebrate Pathology - Tập 108 - Trang 69-75 - 2011
Algimantas P. Valaitis1
1USDA Forest Service, 359 Main Road, Delaware, OH 43015, United States

Tài liệu tham khảo

Aimanova, 2006, Expression of Cry1Ac cadherin receptors in insect midgut and cell lines, J. Invertebr. Pathol., 92, 178, 10.1016/j.jip.2006.04.011 Arenas, 2010, Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin, J. Biol. Chem., 285, 12497, 10.1074/jbc.M109.085266 Banks, 2003, Cloning of a Heliothis virescens 110 kDa aminopeptidase N and expression in Drosophila S2 cells, Insect Biochem. Mol. Biol., 33, 499, 10.1016/S0965-1748(03)00022-5 Bravo, 1992, Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects, J. Invertebr. Pathol., 60, 237, 10.1016/0022-2011(92)90004-N Bravo, 2004, Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains, Biochim. Biophys. Acta, 1667, 38, 10.1016/j.bbamem.2004.08.013 Buee, 1991, Optimization of an alcian blue dot-blot assay for the detection of glycosaminoglycans and proteoglycans, Anal. Biochem., 195, 238, 10.1016/0003-2697(91)90323-L Campbell, 1987, Papilin: A Drosophila proteoglycan-like sulfated glycoprotein from basement membranes, J. Biol. Chem., 262, 17605, 10.1016/S0021-9258(18)45424-5 Chang, 2003, Signal transduction and integral membrane proteins, 115 Chen, 2005, Comparison of the localization of Bacillus thuringiensis Cry1A δ-endotoxins and their binding proteins in larval midgut of the tobacco hornworm, Manduca sexta, Cell Tissue Res., 321, 123, 10.1007/s00441-005-1124-6 Dechklar, 2011, Functional expression in insect cells of glycophosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: A Bacillus thuringiensis Cry4Ba toxin receptor, Insect Biochem. Mol. Biol., 41, 159, 10.1016/j.ibmb.2010.11.006 Dennis, 1991, Expression of carbohydrate epitopes L2/HNK-1 and L3 in the larva and imago of Drosophila melanogaster and Calliphora vicina, Cell Tissue Res., 265, 589, 10.1007/BF00340883 Dinglasan, 2007, Plasmodium falciparum ookinetes require midgut chondroitin sulfate proteoglycans for cell invasion, Proc. Natl. Acad. Sci. USA, 104, 15882, 10.1073/pnas.0706340104 Eguchi, 1995, Alkaline phosphatase isozymes in insects and comparison with mammalian enzyme, Comp. Biochem. Physiol., 111B, 151, 10.1016/0305-0491(94)00248-S Fernandez, 2006, A GPI-anchored alkaline phosphatase is a functional receptor of Cry11Aa toxin in Aedes aegypti larvae, Biochem. J., 394, 77, 10.1042/BJ20051517 Gahan, 2001, Identification of a gene associated with Bt resistance in Heliothis virescens, Science, 293, 857, 10.1126/science.1060949 Hara, 2003, A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae, FEBS Lett., 538, 29, 10.1016/S0014-5793(03)00117-0 Hua, 2009, Anopheles gambiae alkaline phosphatase is a functional receptor of Bacillus thuringiensis jegathesan Cry11Ba toxin, Biochemistry, 48, 9785, 10.1021/bi9014538 Jenkins, 1999, Binding of Bacillus thuringiensis to Manduca sexta aminopeptidase-N receptor is not directly related to toxicity, FEBS Lett., 462, 373, 10.1016/S0014-5793(99)01559-8 Jenkins, 2000, Bivalent sequential binding model of Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor, J. Biol. Chem., 275, 14423, 10.1074/jbc.275.19.14423 Kimura, 2010, Clostridium perfringens enterotoxin interacts with claudins via electrostatic attraction, J. Biol. Chem., 285, 401, 10.1074/jbc.M109.051417 Lane, 1989, Changes in microvilli and Golgi-associated membranes of lepidopteran cells induced by an insecticidal active bacterial δ-endotoxin, J. Cell Sci., 93, 337, 10.1242/jcs.93.2.337 Lee, 1992, Location of the Bombyx mori receptor binding region on a Bacillus thuringiensis δ-endotoxin, J. Biol. Chem., 267, 3115, 10.1016/S0021-9258(19)50702-5 Liang, 1995, Irreversible binding kinetics of Baciluus thuringiensis Cry1A δ-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity, J. Biol. Chem., 270, 24719, 10.1074/jbc.270.42.24719 Likitvivatanavong, 2011, Cadherin, alkaline phosphatase, and aminopeptidase N as receptors of Cry11Ba toxin from Bacillus thuringiensis subsp. Jegathesan in Aedes aegypti, Appl. Environ. Microbiol., 77, 24, 10.1128/AEM.01852-10 Martin, 1987, Laminin and other basement membrane components, Ann. Rev. Cell Biol., 3, 57, 10.1146/annurev.cb.03.110187.000421 Pacheco, 2009, Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping-pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors, J. Biol. Chem., 284, 32750, 10.1074/jbc.M109.024968 Pigott, 2007, Role of receptors in Bacillus thuringiensis crystal toxin activity, Microbiol. Mol. Biol. Rev., 71, 255, 10.1128/MMBR.00034-06 Pigott, 2008, Investigating the properties of Bacillus thuringiensis Cry proteins with novel loop replacements created using combinatorial molecular biology, Appl. Environ. Microbiol., 74, 3497, 10.1128/AEM.02844-07 Rajamohan, 1996, Protein engineering of Bacillus thuringiensis δ-endotoxin: mutations at domain II of Cry1Ab enhance receptor affinity and toxicity toward gypsy moth larvae, Proc. Natl. Acad. Sci. USA, 93, 14338, 10.1073/pnas.93.25.14338 Rausell, 2000, Effect of Bacillus thuringiensis toxins on the midgut of the nun moth Lymantria monacha, J. Invertebr. Pathol., 75, 288, 10.1006/jipa.2000.4926 Tito, 1965, The enteric surface coat on cat intestinal microvilli, J. Cell Biol., 27, 475, 10.1083/jcb.27.3.475 Trimble, 1980, Ultrastructural observations on the cell surface of the intestinal epithelium of the nematode, Ascaris suum. Nature of the negative charge, Cell Tissue Res., 205, 55, 10.1007/BF00234442 Valaitis, 2008, Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells, Insect Biochem. Mol. Biol., 38, 611, 10.1016/j.ibmb.2008.03.003 Valaitis A.P., 2009. Immunohistochemical analyses of Bacillus thuringiensis toxin-binding proteins in gypsy moth larval gut tissue sections. In: 42nd Annual Meeting of the Society for Invertebrate Pathology, August 16–20, 2009. Park City, Utah. Valaitis, 1995, Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the Cry1A(c) δ-endotoxin of Bacillus thuringiensis, Insect Biochem. Mol. Biol., 25, 1143, 10.1016/0965-1748(95)00050-X Valaitis, 2001, Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane conjugate that binds Bacillus thuringiensis with high affinity, Arch. Insect Biochem. Physiol., 46, 186, 10.1002/arch.1028 Wall, 1988, Alcian blue staining of proteoglycans in polyacrylamide gels using the “critical electrolyte concentration” approach, Anal. Biochem., 175, 298, 10.1016/0003-2697(88)90392-2 Wolfersberger, 1990, The toxicity of two Bacillus thuringiensis δ-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins, Experientia, 46, 475, 10.1007/BF01954236 Yaoi, 1997, Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin, Eur. J. Biochem., 246, 652, 10.1111/j.1432-1033.1997.t01-1-00652.x Yi, 1996, Immunocytochemical localization of Bacillus thuringiensis CryI toxins in the midguts of three forest insects and Bombyx mori, Can. J. Microbiol., 42, 634, 10.1139/m96-087 You, 2008, Blocking binding of Bacillus thuringiensis Cry1Aa to Bombyx mori cadherin receptor results in only minor reduction of toxicity, BMC Biochem., 9, 3, 10.1186/1471-2091-9-3 Zhuang, 2002, Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation, J. Biol. Chem., 77, 13863, 10.1074/jbc.M110057200