Localization for random perturbations of anisotropic periodic media
Tóm tắt
We prove localization for random perturbations of periodic divergence form operators of the form ∇ · aω · ∇ near the band edges. Here aω is a matrix function which results from an Anderson type perturbation of a periodic matrix function.
Tài liệu tham khảo
J. M. Barbaroux, J. M. Combes and P. D. Hislop,Localization near band edges for random Schrödinger operators, Helvetica Physica Acta70 (1997), 16–43.
R. Carmona and J. Lacroix,Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, Basel, Berlin, 1990.
J. M. Combes and L. Thomas,Asymptotic behavior of eigenfunctions of multiparticle Schrödinger operators, Communications in Mathematical Physics34 (1973), 439–482.
A. Figotin and A. Klein,Localization of classical waves I: Acoustic waves, Communications in Mathematical Physics180 (1996), 439–482.
R. Hempel,Second order perturbations of divergence type operators with a spectral gap, inSymposium on Operator Calculus and Spectral Theory, Lambrecht 1991 (M. Demuth, B. Gramsch and B.-W. Schulze, eds.), Operator Theory Advances and Applications vol. 57, Birkhäuser, Basel, Boston, Berlin, 1992.
R. Hempel and I. Herbst,Bands and gaps for periodic magnetic Hamiltonians, inPartial Differential Operators and Mathematical Physics, International Conference in Holzhau, 1994 (M. Demuth and B.-W. Schulze, eds.), Operator Theory Advances and Applications Vol. 78, Birkhäuser, Basel, Boston, Berlin, 1995.
T. Kato,Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1976.
W. Kirsch,Wegner estimates and Anderson localization for alloy-type potentials, Mathematische Zeitschrift221 (1996), 507–512.
W. Kirsch, P. Stollmann and G. Stolz,Localization for random perturbations of periodic Schrödinger Operators, preprint.
L. Pastur and A. Figotin,Random Schrödinger operators, Springer-Verlag, Berlin, 1992.
M. Reed and B. Simon,Methods of Modern Mathematical Physics IV, Academic Press, New York, 1978.
G. V. Rozenblum, M. A. Shubin and M. Z. Solomyak,Spectral theory of differential operators, inPartial Differential Equations (M. A. Shubin, ed.), Encyclopedia of Mathematical Sciences Vol. 64, Springer-Verlag, Berlin, Heidelberg, 1994.
P. Stollmann,A short proof of a Wegner estimate and localization, preprint.
W. Thirring,A Course in Mathematical Physics 3, Quantum Mechanics of Atoms and Molecules Springer-Verlag, New York, Wien, 1981.
J. Weidmann,Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics Vol. 68, Springer-Verlag, Berlin, 1980.