Locality and modular Ehrenfeucht–Fraïssé games

Journal of Applied Logic - Tập 10 - Trang 144-162 - 2012
Achim Blumensath1
1TU Darmstadt, Mathematik, AG Logik, Schloßgartenstraße 7, 64289 Darmstadt, Germany

Tài liệu tham khảo

Arenas, 2004, Game-based notions of locality over finite models, vol. 3210, 175 Arora, 1997, On winning strategies in Ehrenfeucht–Fraïssé games, Theoretical Computer Science, 174, 97, 10.1016/S0304-3975(96)00015-1 A. Blumensath, Structures of bounded partition width, PhD Thesis, RWTH Aachen, Aachen, 2003. Blumensath, 2006, A model theoretic characterisation of clique-width, Annals of Pure and Applied Logic, 142, 321, 10.1016/j.apal.2006.02.004 Courcelle, 2004, Clique-width of countable graphs: a compactness property, Discrete Mathematics, 276, 127, 10.1016/S0012-365X(03)00303-0 Ebbinghaus, 1995 Fagin, 1997, Easier ways to win logical games, vol. 31, 1 Fagin, 1994, On monadic NP vs monadic co-NP, Information and Computation, 120, 78, 10.1006/inco.1995.1100 Ferrante, 1979, The Computational Complexity of Logical Theories, vol. 718 H. Gaifman, On local and nonlocal properties, in: Logic Colloquium ʼ81, 1982, pp. 105–135. Hanf, 1965, Model-theoretic methods in the study of elementary logic, 132 L. Libkin, On the forms of locality over finite models, in: Proc. 12th IEEE Symp. on Logic in Computer Science, LICS, 1997, pp. 204–215. Pikhurko, 2006, The first order definability of graphs: upper bounds for quantifier rank, Discrete Applied Mathematics, 154, 2511, 10.1016/j.dam.2006.03.002 Schwentick, 1996, On winning Ehrenfeucht games and monadic NP, Annals of Pure and Applied Logic, 79, 61, 10.1016/0168-0072(95)00030-5