Local well-posedness of the coupled Yang–Mills and Dirac system in temporal gauge

Hartmut Pecher1
1Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Wuppertal, Germany

Tóm tắt

We consider the classical Yang–Mills system coupled with a Dirac equation in 3+1 dimensions in temporal gauge. Using that most of the nonlinear terms fulfill a null condition we prove local well-posedness for small data with minimal regularity assumptions. This problem for smooth data was solved forty years ago by Y. Choquet-Bruhat and D. Christodoulou. The corresponding problem in Lorenz gauge was considered recently by the author in [14].

Tài liệu tham khảo

d’Ancona, P., Foschi, D., Selberg, S.: Atlas of products for wave-Sobolev spaces on \(\mathbb{R}^{1+3}\). Trans. Am. Math. Soc. 364, 31–63 (2012) d’Ancona, P., Foschi, D., Selberg, S.: Null structure and almost optimal regularity for the Dirac–Klein–Gordon system. J. Eur. Math. Soc. 9, 877–899 (2007) Choquet-Bruhat, Y., Christodoulou, D.: Existence of global solutions of the Yang–Mills, Higgs and spinor field equations in 3 + 1 dimensions. Annales Scientifiques de l’É.N.S. 4e série 14(4), 481–506 (1981) Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133, 60–68 (1995) Huh, H., Oh, S.-J.: Low regularity solutions to the Chern–Simons–Dirac and the Chern–Simons–Higgs equations in the Lorenz gauge. Commun. Partial Differ. Equ. 41, 375–397 (2016) Klainerman, S., Machedon, M.: Finite energy solutions of the Yang–Mills equations in \({{\mathbb{R}}}^{3+1}\). Ann. Math. 142, 39–119 (1995) Klainerman, S., Machedon, M.: On the Maxwell–Klein–Gordon equation with finite energy. Duke Math. J. 74, 19–44 (1994) Klainerman, S., Machedon, M.: Estimates for null forms and the spaces \(H_{s,\delta }\). Int. Math. Res. Notices 17, 853–865 (1996) Klainerman, S., Machedon, M.: (Appendices by J. Bourgain and D. Tataru): remark on Strichartz-type inequalities. Int. Math. Res. Notices 5, 201–220 (1996) Klainerman, S., Selberg, S.: Bilinear estimates and applications to nonlinear wave equations. Commun. Contemp. Math. 4, 223–295 (2002) Oh, S.-J.: Gauge choice for the Yang–Mills equations using the Yang–Mills heat flow and local well-posedness in \(H^1\). J. Hyperbolic Differ. Equ. 11, 1–108 (2014) Oh, S.-J.: Finite energy global well-posedness of the Yang–Mills equations on \(\mathbb{R}^{1+3}\): an approach using the Yang–Mills heat flow. Duke Math. J. 164, 1669–1732 (2015) Pecher, H.: Local well-posedness for the \((n + 1)\)- dimensional Yang–Mills and Yang–Mills Higgs system in temporal gauge. Nonlinear Differ. Equ. Appl. 23–40 (2016) Pecher, H.: Local well-posedness of the coupled Yang–Mills and Dirac system for low regularity data. Nonlinearity 35, 1–29 (2022). Corrigendum: Nonlinearity 35 (2), (2022) , arXiv:2103.06770 Schwartz, M.D.: Quantum Field and the Standard Model. Cambridge University Press, Cambridge (2014) Schwarz, G., Sniatycki, J.: Gauge symmetries of an extended phase space for Yang–Mills and Dirac fields. Ann. Inst. Henri Poincaré 66, 109–136 (1997) Selberg, S., Tesfahun, A.: Null structure and local well-posedness in the energy class for the Yang–Mills equations in Lorenz gauge. J. Eur. Math. Soc. 18, 1729–1752 (2016) Tao, T.: Multilinear weighted convolutions of \(L^2\)-functions and applications to non-linear dispersive equations. Am. J. Math. 123, 838–908 (2001) Tao, T.: Local well-posedness of the Yang–Mills equation in the temporal gauge below the energy norm. J. Differ. Equ. 189, 366–382 (2003) Tesfahun, A.: Local well-posedness of Yang–Mills equations in Lorenz gauge below the energy norm. Nonlinear Differ. Equ. Appl. 22, 849–875 (2015)