Local well-posedness of a multidimensional shock wave for the steady supersonic isothermal flow

Science China Mathematics - Tập 61 - Trang 453-486 - 2017
Yuchen Li1,2
1Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, China
2Department of Mathematics & Institute of Mathematical Science, Nanjing University, Nanjing, China

Tóm tắt

In this paper, we prove the local existence, uniqueness and stability of a supersonic shock for the supersonic isothermal incoming flow past a curved cone. Major difficulties include constructing an appropriate solution and treating the Neumann boundary conditions and local stability condition.

Tài liệu tham khảo

Chen S. Existence of stationary supersonic flows past a pointed body. Arch Ration Mech Anal, 2001, 156: 141–181 Chen S, Xin Z, Yin H. Global shock wave for the supersonic flow past a perturbed cone. Comm Math Phys, 2002, 228: 47–84 Courant R, Friedrichs K O. Supersonic Flow and Shock Waves. New York-Heidelberg: Springer, 1976 Cui D, Yin H. Global supersonic conic shock wave for the steady supersonic flow past a cone: Isothermal gas. Pacific J Math, 2007, 233: 257–289 Gilbarg D, Tudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin-New York: Springer, 1983 Godin P. Global shock waves in some domains for the isentropic irrotational potential flow equations. Comm Partial Differential Equations, 1997, 22: 1929–1997 Hardy G H, Littlewood J E, Polya G. Inequalities. London: Cambridge University Press, 1964 Ikawa M. A mixed problem for hyperbolic equations of second order with a first order derivative boundary condition. Publ Res Inst Math Sci, 1969, 5: 119–147 Li J, Ingo W, Yin H. A global multidimensional shock wave for 2-D and 3-D unsteady potential flow equations. ArXiv:1310.3470, 2013 Li J, Ingo W, Yin H. On the global existence and stability of a three-dimensional supersonic conic shock wave. Comm Math Phys, 2014, 329: 609–640 Majda A. Compressible Fluid Flow and Systems of Conservation Laws. New York: Springer, 1984 Majda A. One perspective on open problems in multi-dimensional conservation laws. In: Multidimensional Hyperbolic Problems and Computations. The IMA Volumes in Mathematics and Its Applications, vol. 29. New York: Springer, 1991, 217–238 Majda A, Thomann E. Multidimensional shock fronts for second wave equations. Comm Partial Differential Equations, 1987, 12: 777–828 M´etivier G. Interaction de deux chocs pour un syst´eme de deux lois de conservation, en dimension deux d’espace. Trans Amer Math Soc, 1986, 296: 431–479 Shibata Y. On the Neumann problem for some linear hyperbolic systems of second order. Tsukuba J Math, 1998, 12: 149–209 Xin Z. Some Current Topics in Nonlinear Conservation Laws. Providence: Amer Math Soc, 2000 Zheng Y. Systems of Conservation Laws. Two-dimensional Riemann Problems. Boston: Birkhäuser, 2001