Local smoothing regression with functional data

Karim Benhenni1, Frédéric Ferraty2, Mustapha Rachdi1, Philippe Vieu2
1Université de Grenoble, LJK UMR CNRS 5224, UFR SHS, BP. 47, F38040, Grenoble Cedex 09, France
2Université Paul Sabatier, LSP UMR CNRS 5583, 118, Route de Narbonne, 31062 Toulouse Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cardot H, Ferraty F, Sarda P (2003) Spline estimators for the functional linear model. Stat Sin 13(3):571–591

Ferraty F, Vieu P (2004) Nonparametric models for functional data, with application in regression, time series prediction and curve discrimination. J Nonparametric Stat 16(1–2):111–125

Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, Springer Series in Statistics, New York

Grenander U (1963) Probabilities on algebraic structures. Wiley, New York

Härdle W, Bowman A (1988) Bootrapping in nonparametric regression: local adaptive smoothing and confidence bands. J Am Stat Assoc 83:102–110

Härdle W, Marron JS (1985) Optimal bandwidth selection in nonparametric regression function estimation. Ann Stat 13(4):1465–1481

Marron JS, Härdle W (1986) Random approximations to some measures of accuracy in nonparametric curve estimation. J Multivar Anal 20:91–113

Müller HG, Stadtmüller U (1987) Variable bandwidth kernel estimators of regression curves. Ann Stat 15:182–201

Nadaraya EA (1964) On estimating regression. Theory Probab. Appl. 9:141–142

Rachdi M, Vieu P (2006) Nonparametric regression for functional data: automatic smoothing parameter selection. J Stat Plann Inference (in press)

Ramsay J, Silverman B (1997) Functional data analysis. Springer, Springer Series in Statistics, New York

Ramsay J, Silverman B (2002) Applied functional data analysis. Methods and case studies. Springer, Springer Series in Statistics, New York

Vieu P (1991) Nonparametric regression: optimal local bandwidth choice. J R Stat Soc 53(2): 453–464

Watson GS (1964) Smooth regression analysis. Sankhya Ser. A 26:359–372

Whittle P (1960) Bounds for the moments of linear and quadratic forms in independent random variables (in russian). Teor. Verojatnost. I Primenen, 331–335. Engl. Transl. Theory Probab. Appl. 5, pp 302–305