Local proofs for global safety properties
Tóm tắt
Từ khóa
Tài liệu tham khảo
Balaban I, Fang Y, Pnueli A, Zuck LD (2005) IIV: An invisible invariant verifier. In: CAV. LNCS, vol 3576. Springer, Berlin, pp 408–412
Chaki S, Clarke EM, Sinha N, Thati P (2005) Automated assume-guarantee reasoning for simulation conformance. In: CAV. LNCS, vol 3576. Springer, Berlin, pp 534–547
Chandy KM, Misra J (1981) Proofs of networks of processes. IEEE Trans Softw Eng 7(4):417–426
Clarke EM, Grumberg O (1987) Avoiding the state explosion problem in temporal logic model checking. In: PODC, pp 294–303
Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2003) Counterexample-guided abstraction refinement for symbolic model checking. J Assoc Comput Mach 50(5):752–794
Clarke EM, Emerson EA (1981) Design and synthesis of synchronization skeletons using branching time temporal logic. In: Workshop on logics of programs. LNCS, vol 131. Springer, Berlin
Cobleigh JM, Avrunin GS, Clarke LA (2006) Breaking up is hard to do: an investigation of decomposition for assume-guarantee reasoning. In: ISSTA, pp 97–108
Cohen A, Namjoshi KS (2008) Local proofs for linear-time properties of concurrent programs. In: CAV (to appear)
Cousot P, Cousot R (1984) Invariance proof methods and analysis techniques for parallel programs. In: Biermann AW, Guiho G, Kadratoff Y (eds) Automatic program construction techniques. Macmillan, New York, pp 243–271, chap 12
de Roever W-P, de Boer F, Hannemann U, Hooman J, Lakhnech Y, Poel M, Zwiers J (2001) Concurrency verification: introduction to compositional and noncompositional proof methods. Cambridge University Press, Cambridge
Dijkstra EW (1976) A discipline of programming. Prentice Hall, New York
Dijkstra EW (1976) EWD 554: A Personal Summary of the Gries-Owicki Theory. Available at http://www.cs.utexas.edu/users/EWD
Flanagan C, Freund SN, Qadeer S, Seshia SA (2005) Modular verification of multithreaded programs. Theor Comput Sci 338(1–3):153–183
Flanagan C, Qadeer S (2003) Thread-modular model checking. In: SPIN. LNCS, vol 2648. Springer, Berlin, pp 213–224
Giannakopoulou D, Pasareanu CS (2005) Learning-based assume-guarantee verification (tool paper). In: SPIN. LNCS, vol 3639. Springer, Berlin, pp 282–287
Giannakopoulou D, Pasareanu CS, Barringer H (2002) Assumption generation for software component verification. In: ASE, pp 3–12
Henzinger TA, Jhala R, Majumdar R, Qadeer S (2003) Thread-modular abstraction refinement. In: CAV. LNCS, vol 2725. Springer, Berlin, pp 262–274
Hu AJ, Dill DL (1993) Efficient verification with bdds using implicitly conjoined invariants. In: CAV. LNCS, vol 697. Springer, Berlin, pp 3–14
Jhala R, McMillan KL (2001) Microarchitecture verification by compositional model checking. In: CAV. LNCS, vol 2102. Springer, Berlin, pp 396–410
Jones CB (1981) Development methods for computer programs including a notion of interference. PhD thesis, Oxford University
Lamport L (1977) Proving the correctness of multiprocess programs. IEEE Trans Softw Eng 3(2):125–143
McMillan KL (1997) A compositional rule for hardware design refinement. In: CAV. LNCS, vol 1254. Springer, Berlin
Namjoshi KS (2007) Symmetry and completeness in the analysis of parameterized systems. In: VMCAI. LNCS, vol 4349. Springer, Berlin
Owicki SS, Gries D (1976) Verifying properties of parallel programs: An axiomatic approach. Commun Assoc Comput Mach 19(5):279–285
Pnueli A (1985) In transition from global to modular reasoning about programs. In: Logics and models of concurrent systems. NATO ASI series
Pnueli A, Ruah S, Zuck LD (2001) Automatic deductive verification with invisible invariants. In: TACAS. LNCS, vol 2031. Springer, Berlin, pp 82–97
Pnueli A, Shahar E (1996) A platform for combining deductive with algorithmic verification. In: CAV. LNCS, vol 1102. Springer, Berlin, pp 184–195. Web: www.cs.nyu.edu/acsys/tlv
Queille JP, Sifakis J (1982) Specification and verification of concurrent systems in CESAR. In: Proc of the 5th international symposium on programming. LNCS, vol 137. Springer, Berlin
Shoham S, Grumberg O (2007) Compositional verification and 3-valued abstractions join forces. In: SAS, pp 69–86