Local measurements of upward air-water two-phase flows in a vertical 6×6 rod bundle
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chen, S. W., Liu, Y., Hibiki, T., Ishii, M., Yoshida, Y., Kinoshita, I., Murase, M., Mishima, K. 2012. Experimental study of air-water two-phase flow in an 8×8 rod bundle under pool condition for one-dimensional drift-flux analysis. Int J Heat Fluid Fl, 33: 168–181.
Fu, X. Y., Ishii, M. 2003. Two-group interfacial area transport in vertical air-water flow. Nucl Eng Des, 219: 143–168.
Hibiki, T., Hogsett, S., Ishii, M. 1998. Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow. Nucl Eng Des, 184: 287–304.
Hibiki, T., Ishii, M. 2000. Two-group interfacial area transport equations at bubbly-to-slug flow transition. Nucl Eng Des, 202: 39–76.
Hibiki, T., Ishii, M. 2002. Interfacial area concentration of bubbly flow systems. Chem Eng Sci, 57: 3967–3977.
Hibiki, T., Lee, T. H., Lee, J. Y., Ishii, M. 2006. Interfacial area concentration in boiling bubbly flow systems. Chem Eng Sci, 61: 7979–7990.
Hibiki, T., Ozaki, T., Shen, X. Z., Miwa, S., Kinoshita, I., Hazuku, T., Rassame, S. 2018. Constitutive equations for vertical upward two-phase flow in rod bundle. Int J Heat Mass Transfer, 127: 1252–1266.
Hosokawa, S., Hayashi, K., Tomiyama, A. 2014. Void distribution and bubble motion in bubbly flows in a 4×4 rod bundle. Part I: Experiments. J Nucl Sci Technol, 51: 220–230.
Ishii, M. 1975. Thermo Fluid Dynamic Theory of Two Phase Flow. Eyrolles Paris, France.
Ishii, M. 1977. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes (No. ANL-77-47). Office of Scientific and Technical Information (OSTI), Argonne National Lab., Ill.(USA).
Ishii, M., Hibiki, T. 2010. Thermo-Fluid Dynamics of Two-Phase Flow. New York: Springer.
Kamei, A., Hosokawa, S., Tomiyama, A., Kinoshita, I., Murase, M. 2010. Void fraction in a four by four rod bundle under a stagnant condition. J Power Energy Syst, 4: 315–326.
Kataoka, I., Ishii, M. 1987. Drift flux model for large diameter pipe and new correlation for pool void fraction. Int J Heat Mass Transfer, 30: 1927–1939.
Kataoka, I., Ishii, M., Serizawa, A. 1986. Local formulation and measurements of interfacial area concentration in two-phase flow. Int J Multiphase Flow, 12: 505–529.
Kondo, M., Kumamaru, H., Murata, H., Anoda, Y., Kukita, Y. 1993. Core void fraction distribution under high-temperature high-pressure boil-off conditions: Experimental study with two-phase flow test facility (TPTF). JAERI-M 93-200. Ibaraki (Japan): Japan Atomic Energy Research Institute (JAERI). (in Japanese)
Mishima, K., Ishii, M. 1984. Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transfer, 27: 723–737.
Morooka, S., Ishizuka, T., Iizuka, M., Yoshimura, K. 1989. Experimental study on void fraction in a simulated BWR fuel assembly (evaluation of cross-sectional averaged void fraction). Nucl Eng Des, 114: 91–98
Ozaki, T., Suzuki, R., Mashiko, H., Hibiki, T. 2013. Development of drift-flux model based on 8×8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions. J Nucl Sci Technol, 50: 563–580.
Paranjape, S. S. 2009. Two-phase flow interfacial structures in a rod-bundle geometry. Ph.D. Thesis. Purdue University.
Ren, Q., Pan, L., Zhou, W., Du, S., Li, Z. 2018. Phase distribution characteristics of bubbly flow in 5×5 vertical rod bundles with mixing vane spacer grids. Exp Therm Fluid Sci, 96: 451–459.
Schlegel, J. P., Sawant, P., Paranjape, S., Ozar, B., Hibiki, T., Ishii, M. 2009. Void fraction and flow regime in adiabatic upward two-phase flow in large diameter pipes. Nucl Eng Des, 239: 2864–2874.
Shen, X., Deng, B. 2016. Development of interfacial area concentration correlations for small and large bubbles in gas-liquid two-phase flows. Int J Multiphase Flow, 87: 136–155.
Shen, X., Deng, B. 2018. Corrigendum to “Development of interfacial area concentration correlations for small and large bubbles in gas-liquid two-phase flows” [Int. J. Multiph. Flow 87 (2016) 136–155]. Int J Multiphase Flow, 108: 93
Shen, X., Hibiki, T. 2015. Interfacial area concentration in gas-liquid bubbly to churn flow regimes in large diameter pipes. Int J Heat Fluid Fl, 54: 107–118.
Shen, X., Hibiki, T., Nakamura, H. 2012. Developing structure of two-phase flow in a large diameter pipe at low liquid flow rate. Int J Heat Fluid Fl, 34: 70–84.
Shen, X., Hibiki, T., Nakamura, H. 2015. Bubbly-to-cap bubbly flow transition in a long-26m vertical large diameter pipe at low liquid flow rate. Int J Heat Fluid Fl, 52: 140–155.
Shen, X., Matsui, R., Mishima, K., Nakamura, H. 2010a. Distribution parameter and drift velocity for two-phase flow in a large diameter pipe. Nucl Eng Des, 240: 3991–4000.
Shen, X., Mishima, K., Nakamura, H. 2005a. Two-phase phase distribution in a vertical large diameter pipe. Int J Heat Mass Transfer, 48: 211–225.
Shen, X., Mishima, K., Nakamura, H. 2008. Error reduction, evaluation and correction for the intrusive optical four-sensor probe measurement in multi-dimensional two-phase flow. Int J Heat Mass Transfer, 51: 882–895.
Shen, X., Mishima, K., Nakamura, H. 2010b. Measurement of two-phase flow in a vertical large diameter pipe using hot-film anemometer. Jpn J Multiphase Flow, 23: 605–613. (in Japanese)
Shen, X., Nakamura, H. 2013. Local interfacial velocity measurement method using a four-sensor probe. Int J Heat Mass Transfer, 67: 843–852.
Shen, X., Nakamura, H. 2014. Spherical-bubble-based four-sensor probe signal processing algorithm for two-phase flow measurement. Int J Multiphase Flow, 60: 11–29.
Shen, X., Saito, Y., Mishima, K., Nakamura, H. 2005b. Methodological improvement of an intrusive four-sensor probe for the multi-dimensional two-phase flow measurement. Int J Multiphase Flow, 31: 593–617.
Shen, X., Saito, Y., Mishima, K., Nakamura, H. 2006. A study on the characteristics of upward air-water two-phase flow in a large pipe. Exp Therm Fluid Sci, 31: 21–36.
Shen, X., Sun, H., Deng, B., Hibiki, T., Nakamura, H. 2016. Gas-liquid bubbly flow structure in a vertical large-diameter square duct. Prog Nucl Energ, 89: 140–158.
Shen, X., Sun, H., Deng, B., Hibiki, T., Nakamura, H. 2017. Experimental study on interfacial area transport of two-phase bubbly flow in a vertical large-diameter square duct. Int J Heat Fluid Fl, 67: 168–184.
Sun, H., Kunugi, T., Shen, X., Wu, D., Nakamura, H. 2014. Upward air-water bubbly flow characteristics in a vertical square duct. J Nucl Sci Technol, 51: 267–281.
Tamai, H., Kureta, M., Ohnuki, A., Sato, T., Akimoto, H. 2006. Pressure drop experiments using tight-lattice 37-rod bundles. J Nucl Sci Technol, 43: 699–706.
Yang, X., Schlegel, J. P., Liu, Y., Paranjape, S., Hibiki, T., Ishii, M. 2012. Measurement and modeling of two-phase flow parameters in scaled 8×8 BWR rod bundle. Int J Heat Fluid Fl, 34: 85–97.
Yang, X., Schlegel, J. P., Liu, Y., Paranjape, S., Hibiki, T., Ishii, M. 2013. Experimental study of interfacial area transport in air-water two phase flow in a scaled 8×8 BWR rod bundle. Int J Multiphase Flow, 50: 16–32.
Yun, B. J. 1996. Measurement of two-phase flow parameters in the subcooled boiling. Ph.D. Thesis. Seoul National University.
Yun, B. J., Park, G. C., Julia, J. E., Hibiki, T. 2008. Flow structure of subcooled boiling water flow in a subchannel of 3×3 rod bundles. J Nucl Sci Technol, 45: 402–422.
Zhang, K., Fan, Y., Tian, W., Guo, K., Qiu, S., Su, G. 2016. Pressure drop characteristics of two-phase flow in a vertical rod bundle with support plates. Nucl Eng Des, 300: 322–329