Local large deviations for periodic infinite horizon Lorentz gases

Journal d'Analyse Mathematique - Trang 1-34 - 2023
Ian Melbourne1, Françoise Pène2, Dalia Terhesiu3
1Mathematics Institute, University of Warwick, Coventry, UK
2Université de Brest LMBA, UMR CNRS 6205, Brest cedex, France
3Mathematisch Instituut, University of Leiden, Leiden, Netherlands

Tóm tắt

We prove optimal local large deviations for the periodic infinite horizon Lorentz gas viewed as a ℤd-cover (d = 1,2) of a dispersing billiard. In addition to this specific example, we prove a general result for a class of nonuni-formly hyperbolic dynamical systems and observables associated with central limit theorems with nonstandard normalisation.

Tài liệu tham khảo

J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps, Stoch. Dyn. 1 (2001), 193–237. J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495–548. J. Aaronson and D. Terhesiu, Local limit theorems for fibred semiflows, Discrete Contin. Dyn. Syst. 40 (2020), 6575–6609. P. Bálint and S. Gouézel, Limit theorems in the stadium billiard, Commun. Math. Phys. 263 (2006), 461–512. P. Bálint and I. Melbourne, Statistical properties for flows with unbounded roof function, including the Lorenz attractor, J. Stat. Phys. 172 (2018), 1101–1126. Q. Berger, Notes on random walks in the Cauchy domain of attraction, Probab. Theory Related Fields 175 (2019), 1–44. Q. Berger, Strong renewal theorems and local large deviations for multivariate random walks and renewals, Electron. J. Probab. 24 (2019), Article no. 46. L. A. Bunimovich, Y. G. Sinaĭ and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk 46 (1991), 43–92; English translation in Russian Math. Surveys 46 (1991), 47–106 F. Caravenna and R. A. Doney, Local large deviations and the strong renewal theorem. Electron. J. Probab. 24 (2019), 1–18. N. Chernov, Decay of correlations and dispersing billiards, J. Statist. Phys. 94 (1999), 513–556. N. Chernov and R. Markarian, Chaotic Billiards, American Mathematical Society, Providence, RI, 2006. N. I. Chernov and H.-K. Zhang, Improved estimates for correlations in billiards. Comm. Math. Phys. 77 (2008), 305–321. D. Dolgopyat and P. Nándori, On mixing and the local central limit theorem for hyperbolic flows, Ergodic Theory Dynam. System 40 (2020), 142–174. S. Gouézel, Sharp polynomial estimates for the decay of correlations, Israel J. Math. 139 (2004), 29–65. S. Gouézel, Berry–Esseen theorem and local limit theorem for non uniformly expanding maps, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), 997–1024. Y. Katznelson, An Introduction to Harmonic Analysis. Dover, New York, 1976. G. Keller and C. Liverani, Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa C1. Sci. (4) 19 (1999), 141–152. I. Melbourne and D. Terhesiu, Analytic proof of multivariate stable local large deviations and application to deterministic dynamical systems, Electron. J. Probab. 27 (2022), Article no. 21. F. Pène and D. Terhesiu, Sharp error term in local limit theorems and mixing for Lorentz gases with infinite horizon. Commun. Math. Phys. 382 (2021), 1625–1689. O. M. Sarig, Subexponential decay of correlations, Invent. Math. 150 (2002), 629–653. Y. G. Sinaĭ, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspehi Mat. Nauk 25 (1970), 141–192. D. Szàsz and T. Varjú, Limit Laws and Recurrence for the Planar Lorentz Process with Infinite Horizon. J. Statist. Phys. 129 (2007), 59–80. L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), 585–650.