Local existence of solutions to 2D Prandtl equations in a weighted Sobolev space
Tóm tắt
In this work, we investigate two-dimensional nonlinear Prandtl equations on the half plane and prove the local existence of solutions by energy methods in an exponential weighted Sobolev space. We use the skill of cancellation mechanism and construct a new unknown function to overcome some difficulties respectively.
Tài liệu tham khảo
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, vol. 140. Elsevier, Amsterdam (2003)
Alexandre, R., Wang, Y., Xu, C., Yang, T.: Well-posedness of the Prandtl equation in sobolev spaces. J. Am. Math. Soc. 28, 745–784 (2015)
Caflisch, R.E., Sammartino, M.: Existence and singularities for the Prandtl boundary layer equations. Z. Angew. Math. Mech. 80, 733–744 (2000)
Cannone, M., Lombardo, M., Sammartino, M.: Existence and uniqueness for the Prandtl equations. C. R. Acad. Sci. Paris 332, 277–282 (2001)
Cannone, M., Lombardo, M., Sammartino, M.: Well-posedness of Prandtl equations with non-compatible data. Nonlinearity 26, 3077–3100 (2013)
Cannone, M., Lombardo, M., Sammartino, M.: On the Prandtl boundary layer equations in presence of corner singularities. Acta Appl. Math. 132, 139–149 (2014)
Chen, D., Wang, Y., Zhang, Z.: Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow. Ann. Henri Poincaré 35, 1119–1142 (2018)
Chen, D., Wang, Y., Zhang, Z.: Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces. J. Differ. Equ. 264, 5870–5893 (2018)
Dietert, H., Gerard-varet, D.: Well-posedness of the Prandtl equations without any structural assumption. Ann. Partial Differ. Equ. 5(1), 8 (2019)
Gérard-Varet, D., Maekawa, Y.: Sobolev stability of Prandtl expansions for the steady Navier–Stokes equations. Arch. Ration. Mech. Anal. 233, 1319–1382 (2019)
Gérard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Norm. Supr 48(6), 1273–1325 (2015)
Gérard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2D Navier–Stokes flows. Duke Math. J. 167(13), 2531–2631 (2018)
Guo, Y., Iyer, S.: Validity of steady Prandtl layer expansions (2018). arXiv: 1805.05891
Guo, Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier–Stokes flows over a moving plate. Ann. PDE 3, 10 (2017). https://doi.org/10.1007/s40818-016-0020-6
Ignatova, M., Vicol, V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220, 809–848 (2016)
Kukavica, I., Masmoudi, N., Vicol, V., Wong, T.: On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46, 3865–3890 (2014)
Kukavica, I., Vicol, V.: On the local existence of analytical solution to the Prandtl boundary layer equations. Commun. Math. Sci. 11, 269–292 (2013)
Li, W., Wu, D., Xu, C.: Gevrey class smoothing effect for the Prandtl equation. SIAM J. Math. Anal. 48, 1672–1726 (2016)
Li, W., Yang, T.: Well-posedness in Gevrey function space for the three-dimensional Prandtl equations (2017). arXiv:1708.08217
Li, W., Yang, T.: Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points. J. Eur. Math. Soc. 22, 717–775 (2019)
Liu, C., Wang, Y., Yang, T.: Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure. Discrete Contin. Dyn. Syst. 9(6), 2011–2029 (2016)
Liu, C., Wang, Y., Yang, T.: A well-posedness theory for the Prandtl equations in three space variables. Adv. Math. 308, 1074–1126 (2017)
Lombardo, M.C., Cannone, M., Sammartino, M.: Well-posedness of the boundary layer equations. SIAM. J. Math. Anal 35, 987–1004 (2003)
Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67, 1045–1128 (2014)
Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68, 1683–1741 (2015)
Mitrinović, D.S., Pěarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications, vol. 63. Springer, Berlin (1991)
Oleinik, O.A.: On the system of Prandtl equations in boundary-layer theory. Dokl. Akad. Nauk SSSR 150, 28–31 (1963)
Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, vol. 15. Chapman and Hall, Boca Raton (1999)
Paicu, M., Zhang, P.: Global existence and decay of solutions to Prandtl system with small analytic data. Arch. Ration. Mech. Anal. 241, 403–446 (2021)
Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung, In: Verhandlung des III Intern. Math.-Kongresses, Heidelberg, pp. 484–491 (1904)
Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equations on a half-space, I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192, 433–461 (1998)
Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equations on a half-space, II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192, 463–491 (1998)
Xin, Z., Zhang, L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181, 88–133 (2004)
Xu, C., Zhang, X.: Long time well-posedness of Prandtl equations in Sobolev space. J. Differ. Equ. 263, 8749–8803 (2017)
Xu, X., Zhao, J.: On the global existence and uniqueness of solutions to Prandtl’s equations. Act. Math. Sin. 25, 109–132 (2009)
Zhang, P., Zhang, Z.: Long time well-posedness of Prandtl system with small and analytic initial data. J. Funct. Anal. 270, 2591–2615 (2016)