Local existence and nonexistence for fractional in time weakly coupled reaction-diffusion systems

Masamitsu Suzuki1
1Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alvarez, E., Gal, C.G., Keyantuo, V., Warma, M.: Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. 181, 24–61 (2019)

Bazhlekova, E.: Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven University of Technology (2001)

D’Abbicco, M., Ebert, M. R., and Picon, T.: Global existence of small data solutions to the semilinear fractional wave equation. In: New Trends in Analysis and Interdisciplinary Applications, Trends Math. Res. Perspect., pp. 465–471. Birkhäuser, Cham (2017)

Dickstein, F., Loayza, M.: Life span of solutions of a strongly coupled parabolic system. Mat. Contemp. 32, 85–106 (2007)

Dickstein, F., Loayza, M.: Life span of solutions of a weakly coupled parabolic system. Z. Angew. Math. Phys. 59, 1–23 (2008)

Ferreira, L.C.F., Mateus, E.: Self-similarity and uniqueness of solutions for semilinear reaction-diffusion systems. Adv. Differ. Equ. 15, 73–98 (2010)

Fujishima, Y., Ioku, N.: Existence and nonexistence of solutions for the heat equation with a superlinear source term. J. Math. Pures Appl. 118, 128–158 (2018)

Gal, C.G., Warma, M.: Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces. Commun. Partial Differ. Equ. 42, 579–625 (2017)

Gal, C.G., Warma, M.: Fractional-in-Time Semilinear Parabolic Equations and Applications. Mathématiques et Applications, vol. 84. Springer International Publishing, Switzerland (2020)

Gorenflo, R., Luchko, Y., Mainardi, F.: Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, 383–414 (1999)

Ishige, K., Kawakami, T., Sierżȩga, M.: Supersolutions for a class of nonlinear parabolic systems. J. Differ. Equ. 260, 6084–6107 (2016)

Kian, Y., Yamamoto, M.: On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20, 117–138 (2017)

Miyamoto, Y., Suzuki, M.: Weakly coupled reaction-diffusion systems with rapidly growing nonlinearities and singular initial data. Nonlinear Anal. 189, 111576 (2019)

Podlubny, I.: “Fractional Differential Equations”, 198. Academic Press, San Diego (1999)

Quittner, P., Souplet, P.: Admissible $$L_p$$ norms for local existence and for continuation in semilinear parabolic systems are not the same. Proc. R. Soc. Edinb. 131, 1435–1456 (2001)

Quittner, P., Souplet, P.: Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts. Basler Lehrbücher Birkhäuser Verlag, Basel (2007)

Rothe, F.: Global Solutions of Reaction-diffusion Systems. Lecture Notes in Mathematics, vol. 1072. Springer, Berlin, Heidelberg (1984)

Samko, S., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Beach Science Publishers, Yverdon (1993)

Suzuki, M.: Local existence and nonexistence for reaction-diffusion systems with coupled exponential nonlinearities. J. Math. Anal. Appl. 477, 776–804 (2019)

Weissler, F.B.: Local existence and nonexistence for semilinear parabolic equations in $$L^p$$. Indiana Univ. Math. J. 29, 79–102 (1980)

Weissler, F.B.: Existence and nonexistence of global solutions for a semilinear heat equation. Isr. J. Math. 38, 29–40 (1981)

Wright, G.M.: The generalized Bessel function of order greater than one. Q. J. Math. Oxf. Ser. 11, 36–48 (1940)