Local discrepancies in continental scale biomass maps: a case study over forested and non-forested landscapes in Maryland, USA

Wenli Huang1, Anu Swatantran1, Kristofer Johnson2, Laura Duncanson1, Hao Tang1, Jarlath O’Neil Dunne3, G. C. Hurtt1, Ralph Dubayah1
1Department of Geographical Sciences, University of Maryland, College Park, USA
2USDA Forest Service, Newtown Square, USA
3Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Houghton R, Lawrence K, Hackler J, Brown S (2001) The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob Chang Biol 7(7):731–746

Lu D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27(7):1297–1328

Goetz S, Dubayah R (2011) Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag 2(3):231–244

Mitchard E, Saatchi S, Baccini A, Asner G, Goetz S, Harris N et al (2013) Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag 8(1):10

Langner A, Achard F, Grassi G (2014) Can recent pan-tropical biomass maps be used to derive alternative Tier 1 values for reporting REDD+ activities under UNFCCC? Environ Res Lett 9(12). doi: 10.1088/1748-9326/9/12/124008

Hurtt G, Wickland D, Jucks K, Bowman K, Brown M, Duren R et al (2014) NASA Carbon Monitoring System: prototype monitoring, reporting, and verification, 1–37

Zhang X, Kondragunta S (2006) Estimating forest biomass in the USA using generalized allometric models and MODIS land products. Geophys Res Lett 33(9). doi: 10.1029/2006gl025879

Cartus O, Santoro M, Kellndorfer J (2012) Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band. Remote Sens Environ 124:466–478. doi: 10.1016/j.rse.2012.05.029

Johnson K, Birdsey R, Finley A, Swantaran A, Dubayah R, Wayson C et al (2014) Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system. Carbon Balance Manag 9(1):3

Jenkins J, Riemann R (2003) What does nonforest land contribute to the global C balance? In: Proceedings of the 3rd annual forest inventory and analysis symposium. U.S. Department of Agriculture, Forest Service, North Central Station

Dubayah R, Swatantran A, Johnson K, Hurtt G, Zhao M, Finley A (2014) High resolution carbon estimation using remote sensing and ecosystem modeling in NASA’s carbon modeling system. ForestSAT2014 open conference system

Swatantran A, Huang W, Duncanson L, Johnson K, Dunne JON, Hurtt G et al. High-resolution aboveground biomass mapping for carbon monitoring in Maryland (manuscript in preparation)

Kellndorfer J, Walker W, LaPoint E, Bishop J, Cormier T, Fiske G et al (2012) NACP aboveground biomass and carbon baseline data, V. 2 (NBCD 2000), U.S.A., 2000. Data set. Oak Ridge, Tennessee, U.S.A.: ORNL DAAC

Blackard J, Finco M, Helmer E, Holden G, Hoppus M, Jacobs D et al (2008) Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens Environ 112(4):1658–1677. doi: 10.1016/j.rse.2007.08.021

Wilson BT, Woodall CW, Griffith DM (2013) Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance Manag 8(1):1. doi: 10.1186/1750-0680-8-1

Saatchi S, Yifan Y, Fore A, Nuemann M, Chapman B, Nguyen et al (2005) CMS biomass pilot project: US Forest Biomass Maps

Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. For Sci 49(1):12–35

Dubayah R (2012) County-scale carbon estimation in NASA’s carbon monitoring system. Biomass Carbon Storage

O’Neil-Dunne JPM, MacFaden SW, Royar AR, Pelletier KC (2013) An object-based system for LiDAR data fusion and feature extraction. Geocarto Int 28(3):227–242. doi: 10.1080/10106049.2012.689015

O’Neil-Dunne J, MacFaden S, Royar A, Reis M, Dubayah R, Swatantran A (2014) An object-based approach to statewide land cover mapping. Proceedings of ASPRS 2014 annual conference, 23–28 March 2014, Louisville, KY, USA

Breiman L (2001) Random forests. Mach Learn 45(1):5–32

Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J et al (2007) Random forests for classification in ecology. Ecology 88(11):2783–2792. doi: 10.2307/27651436

Kellndorfer JM, Walker WS, LaPoint E, Kirsch K, Bishop J, Fiske G (2010) Statistical fusion of lidar, InSAR, and optical remote sensing data for forest stand height characterization: a regional-scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets. J Geophys Res 115:G00E8. doi: 10.1029/2009jg000997

Wilson BT, Lister AJ, Riemann RI (2012) A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. For Ecol Manag 271:182–198. doi: 10.1016/j.foreco.2012.02.002

Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W et al (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108(24):9899–9904. doi: 10.1073/pnas.1019576108

Avitabile V, Herold M, Henry M, Schmullius C (2011) Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda. Carbon Balance Manag 6(1):7

Miles P (2014) Forest Inventory EVALIDator web-application version 1.5.1.06. In: http://apps.fs.fed.us/Evalidator/evalidator.jsp . U.S. Department of Agriculture, Forest Service, Northern Research Station, St. Paul, MN

Johnson K, Birdsey RA, Cole J, Swantaran A, O’Neil-Dunne J, Dubayah R et al. Integrating LiDAR and forest inventories to fill the trees outside forests data gap. Environ Monit Assess (in review)

Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetl Ecol Manag 18(3):281–296

Sexton JO, Song X-P, Feng M, Noojipady P, Anand A, Huang C et al (2013) Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int J Digit Earth 6(5):427–448

Lu D, Chen Q, Wang G, Liu L, Li G, Moran E (2014) A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int J Digit Earth 1–64. doi: 10.1080/17538947.2014.990526

Dubayah R, Goetz S, Blair JB, Luthcke S, Healey S, Hansen M et al (2014) The Global Ecosystem Dynamics Investigation (GEDI) Lidar. ForestSAT2014 open conference system

Heath L, Hansen M, Smith J, Miles P, Smith W (2008) Investigation into calculating tree biomass and carbon in the FIADB using a biomass expansion factor approach. In: McWilliams W, Moisen G, Czaplewski R (eds) Proceedings of Forest Inventory and Analysis Symposium 2008. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA; Park City, Utah