Local convex hull support and boundary estimation
Tài liệu tham khảo
Baíllo, 2000, Set estimation and nonparametric detection, Canad. J. Statist., 28, 765, 10.2307/3315915
Bárány, 1992, Random polytopes in smooth convex bodies, Mathematika, 39, 81, 10.1112/S0025579300006872
Biau, 2009, Asymptotic normality in density support estimation, Electron. J. Probab., 14, 2617, 10.1214/EJP.v14-722
J.D. Boissonnat, A. Ghosh, Manifold reconstruction using tangential Delaunay complexes, in: Proceedings of the 26th Annual Symposium on Computational Geometry, 2010.
Bubenik, 2010, Statistical topology via Morse theory, persistence, and nonparametric estimation, vol. 516 (91), 75
Carlsson, 2005, Persistent homology and the analysis of high dimensional data
Carlsson, 2009, Topology and data, Bull. Amer. Math. Soc., 46, 255, 10.1090/S0273-0979-09-01249-X
Carlsson, 2005, Persistence barcodes for shapes, Int. J. Shape Model., 11, 149, 10.1142/S0218654305000761
Chevalier, 1976, Estimation du support et du contour du support d’une loi de probabilité, Ann. Inst. H. Poincaré (B) Probab. Statist., 12, 339
Cholaquidis, 2014, On Poincaré cone property, Ann. Statist., 42, 255, 10.1214/13-AOS1188
Cuevas, 1990, On pattern analysis in the non-convex case, Kybernetes, 19, 26, 10.1108/eb005866
Cuevas, 2004, On boundary estimation, Adv. Appl. Probab., 36, 340, 10.1239/aap/1086957575
Devroye, 1980, Detection of abnormal behavior via nonparametric estimation of the support, SIAM J. Appl. Math., 38, 480, 10.1137/0138038
Dumbgen, 1996, Rates of convergence for random approximations of convex sets, Adv. Appl. Probab., 28, 384, 10.2307/1428063
Edelsbrunner, 1997, Triangulating topological spaces, Internat. J. Comput. Geom. Appl., 7, 365, 10.1142/S0218195997000223
Efron, 1965, The convex hull of a random set of points, Biometrika, 15, 331, 10.1093/biomet/52.3-4.331
Federer, 1959, Curvature measures, Trans. Amer. Math. Soc., 93, 418, 10.1090/S0002-9947-1959-0110078-1
Getz, 2004, A local nearest-neighbor convex-hull construction of home ranges and utilization distributions, Ecography, 27, 489, 10.1111/j.0906-7590.2004.03835.x
Hardle, 1995, Estimation of non-sharp support boundaries, J. Multivariate Anal., 55, 205, 10.1006/jmva.1995.1075
Kesler, 2012, Foraging habitat distributions affect territory size and shape in the Tuamotu Kingfisher, Int. J. Zool., 2012, 10.1155/2012/632969
Khünel, 2005
Korte, 2008, Habitat selection at two spatial scales and diurnal activity patterns of adult female forest buffalo, J. Mammal., 89, 115, 10.1644/06-MAMM-A-423.1
Liu, 2010, Foraging habitats and utilization distributions of black-necked cranes wintering at the napahai wetland, China, J. Field Ornithol., 81, 21, 10.1111/j.1557-9263.2009.00257.x
Penrose, 1999, A strong law for the largest nearest-neighbour link between random points, J. Lond. Math. Soc. (2), 60, 951, 10.1112/S0024610799008157
Reitzner, 2003, Random polytopes and the Efron–Stein Jackknife inequality, Ann. Probab., 31, 2136, 10.1214/aop/1068646381
Rodríguez-Casal, 2007, Set estimation under convexity type assumptions, Ann. Inst. H. Poincaré (B) Probab. Statist., 43, 763, 10.1016/j.anihpb.2006.11.001
Schneider, 1988, Random approximation of convex sets, J. Microsc., 151, 211, 10.1111/j.1365-2818.1988.tb04682.x
Walther, 1999, On a generalization of Blaschke’s rolling theorem and the smoothing of surfaces, Math. Methods Appl. Sci., 22, 301, 10.1002/(SICI)1099-1476(19990310)22:4<301::AID-MMA42>3.0.CO;2-M
Zomorodian, 2005, Computing persistent homology, Discrete Comput. Geom., 33, 247, 10.1007/s00454-004-1146-y