Local convergence of a Newton–Traub composition in Banach spaces

Janak Raj Sharma1, Ioannis K. Argyros2
1Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal, India
2Department of Mathematics Sciences, Cameron University, Lawton, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequationes Math. 69, 212–223 (2005)

Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366, 24–32 (2010)

Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)

Argyros, I.K.: Convergence and Applications of Newton-type Iterations. Springer, New York (2008)

Argyros, I.K., Magreñán, Á.A.: Ball convergence theorems and the convergence planes of an iterative methods for nonlinear equations. SeMa 71, 39–55 (2015)

Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169–184 (1990)

Chun, C.: Some improvements of Jarratt’s method with sixth-order convergence. Appl. Math. Comput. 190, 1432–1437 (2007)

Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 199, 686–698 (2007)

Cordero, A., Ezquerro, J.A., Hernández-Veron, M.A., Torregrosa, J.R.: On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)

Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)

Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)

Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: On some computational orders of convergence. Appl. Math. Lett. 23, 472–478 (2010)

Herceg, D., Herceg, D.J.: Means based modifications of Newtons method for solving nonlinear equations. Appl. Math. Comput. 219, 6126–6133 (2013)

Homeier, H.H.H.: On Newton-type methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005)

Hernández, M.A., Martínez, E.: On the semilocal convergence of a three steps Newton-type process under mild convergence conditions. Numer. Algorithms 70, 377–392 (2015)

Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41, 433–455 (2001)

Jarratt, P.: Some fourth order multipoint methods for solving equations. Math. Comput. 20, 434–437 (1966)

Kou, J.: A third-order modification of Newton method for system of nonlinear equation. Appl. Math. Comput. 191, 117–121 (2007)

Kou, J., Li, Y., Wang, X.: Third-order modification of Newton’s method. J. Comput. Appl. Math. 205, 1–5 (2007)

Li, D., Liu, P., Kou, J.: An improvement of the Chebyshev–Halley methods free from second derivative. Appl. Math. Comput. 235, 221–225 (2014)

Lukić, T., Ralević, N.M.: Geometric mean Newton’s method for simple and multiple roots. Appl. Math. Lett. 21, 30–36 (2008)

Neta, B.: A sixth order family of methods for nonlinear equations. Int. J. Comput. Math. 7, 157–161 (1979)

Özban, A.Y.: Some new variants of Newton’s method. Appl. Math. Lett. 17, 677–682 (2004)

Parhi, S.K., Gupta, D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206, 873–887 (2007)

Parhi, S.K., Gupta, D.K.: A sixth order method for nonlinear equations. Appl. Math. Comput. 203, 50–55 (2008)

Ren, H., Wu, Q., Bi, W.: New variants of Jarratt’s method with sixth-order convergence. Numer. Algorithms 52, 585–603 (2009)

Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. Polish Acad. Sci. Banach Center Publ. 3, 129–142 (1979)

Sharma, J.R., Guha, R.K., Sharma, R.: An efficient fourth-order weighted-Newton method for system of nonlinear equations. Numer. Algorithms 62, 307–323 (2013)

Sharma, J.R., Sharma, R., Bahl, A.: An improved Newton–Traub composition for solving systems of nonlinear equations. Appl. Math. Comput. 290, 98–110 (2016)

Traub, J.F.: Iterative Methods for the Solution of Equations. Chelsea Publishing Company, New York (1982)

Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third order convergence. Appl. Math. Lett. 13, 87–93 (2000)

Zhou, X.: A class of Newton’s methods with third-order convergence. Appl. Math. Lett. 20, 1026–1030 (2007)