Local composite likelihood for spatial point processes

Spatial Statistics - Tập 22 - Trang 261-295 - 2017
Adrian Baddeley

Tài liệu tham khảo

Agterberg, 1974, Automatic contouring of geological maps to detect target areas for mineral exploration, J. Int. Assoc. Math. Geol., 6, 373, 10.1007/BF02082358 Allard, 1997, Nonparametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation, J. Amer. Statist. Assoc., 92, 1485 Alm, 1998, Approximation and simulation of the distributions of scan statistics for Poisson processes in higher dimensions, Extremes, 1, 111, 10.1023/A:1009965918058 Anderssen, 2014, Solution of an integral equation arising in spatial point process theory, J. Integral Equations Appl., 26, 437, 10.1216/JIE-2014-26-4-437 Anselin, 1995, Local indicators of spatial association–LISA, Geogr. Anal., 27, 93, 10.1111/j.1538-4632.1995.tb00338.x Baddeley, 2000, Time-invariance estimating equations, Bernoulli, 6, 783, 10.2307/3318756 Baddeley, 2010, Spatial logistic regression and change-of-support for Poisson point processes, Electron. J. Stat., 4, 1151, 10.1214/10-EJS581 Baddeley, 2013, Leverage and influence diagnostics for spatial point processes, Scand. J. Statist., 40, 86, 10.1111/j.1467-9469.2011.00786.x Baddeley, 2013, Residual diagnostics for covariate effects in spatial point process models, J. Comput. Graph. Statist., 22, 886, 10.1080/10618600.2012.721737 Baddeley, 2014, Logistic regression for spatial Gibbs point processes, Biometrika, 101, 377, 10.1093/biomet/ast060 Baddeley, 2008, Properties of residuals for spatial point processes, Ann. Inst. Statist. Math., 60, 627, 10.1007/s10463-007-0116-6 Baddeley, 2012, Approximating the moments of a spatial point process, Stat, 1, 18, 10.1002/sta4.5 Baddeley, 2012, Fast approximation of the intensity of Gibbs point processes, Electron. J. Stat., 6, 1155, 10.1214/12-EJS707 Baddeley, A., Nair, G., 2016. Poisson-saddlepoint approximation for spatial point processes with infinite-order interaction. (submitted for publication). Baddeley, 2015 Baddeley, 2000, Practical maximum Pseudo likelihood for spatial point patterns (with discussion), Aust. N. Z. J. Stat., 42, 283, 10.1111/1467-842X.00128 Baddeley, 2005, Spatstat: an R package for analyzing spatial point patterns, J. Stat. Softw., 12, 1, 10.18637/jss.v012.i06 Baddeley, 2005, Residual analysis for spatial point processes (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 67, 617, 10.1111/j.1467-9868.2005.00519.x Baddeley, 2016, Adjusted composite likelihood ratio test for spatial Gibbs point processes, J. Stat. Comput. Simul., 86, 922, 10.1080/00949655.2015.1044530 Baddeley, 1995, Area-interaction point processes, Ann. Inst. Statist. Math., 47, 601, 10.1007/BF01856536 Banfield, 1993, Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803, 10.2307/2532201 Berman, 1986, Testing for spatial association between a point process and another stochastic process, Appl. Stat., 35, 54, 10.2307/2347865 Berman, 1989, Estimating weighted integrals of the second-order intensity of a spatial point process, J. R. Stat. Soc. Ser. B Stat. Methodol., 51, 81 Berman, 1992, Approximating point process likelihoods with GLIM, Appl. Stat., 41, 31, 10.2307/2347614 Bernhardt, R., Meyer-Olbersleben, F., Kieback, B., 1997. Fundamental investigation on the preparation of gradient structures by sedimentation of different powder fractions under gravity, In: Hui, D. (Ed.), Proceedings of the 4th International Conference on Composite Engineering, ICCE/4, July 6–12 1997, Hawaii. pp. 147–148. Besag, 1977, Some methods of statistical analysis for spatial data, Bull. Int. Statist. Inst., 47, 77 Besag, 1991, The detection of clusters in rare diseases, J. Roy. Statist. Soc. Ser. A, 154, 143, 10.2307/2982708 Billiot, 2008, Maximum Pseudolikelihood estimator for exponential family models of marked Gibbs processes, Electron. J. Stat., 2, 234, 10.1214/07-EJS160 Bithell, 1990, An application of density estimation to geographical epidemiology, Stat. Med., 9, 691, 10.1002/sim.4780090616 Bonham-Carter, 1995, Number 13 Brigham, 1992 Brillinger, 1977, Contribution to discussion of Stone (1977), Ann. Statist., 5, 622 Brillinger, 1978, Comparative aspects of the study of ordinary time series and of point processes, 33 Brillinger, 1990, Spatial–temporal modelling of spatially aggregate birth data, Surv. Methodol., 16, 255 Brillinger, 1986, Two examples of quantal data analysis: (a) multivariate point process, (b) pure death process in an experimental design, 94 Brillinger, 1979, Empirical examination of the Threshold model of neuron firing, Biol. Cybernet., 35, 213, 10.1007/BF00344204 Burman, 1992, Data-dependent estimation of prediction functions, J. Time Series Anal., 13, 189, 10.1111/j.1467-9892.1992.tb00102.x Byers, 1998, Nearest-neighbour clutter removal for estimating features in spatial point processes, J. Amer. Statist. Assoc., 93, 577, 10.1080/01621459.1998.10473711 Carranza, 2009, Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features, Ore Geol. Rev., 35, 383, 10.1016/j.oregeorev.2009.01.001 Carroll, 1998, Local estimating equations, J. Amer. Statist. Assoc., 93, 214, 10.1080/01621459.1998.10474103 Chan, 2009, Detection of spatial clustering with average likelihood ratio test statistics, Amer. Statist., 37, 3985 Clyde, 1991, Logistic regression for spatial pair-potential models, vol. 20, 14, 10.1214/lnms/1215460490 Coeurjolly, 2013, Fast covariance estimation for innovations computed from a spatial Gibbs point process, Scand. J. Statist., 40, 669, 10.1111/sjos.12017 Cressie, 2001, Analysis of spatial point patterns using bundles of product density LISA functions, J. Agric. Biol. Environ. Stat., 6, 118, 10.1198/108571101300325292 Cressie, 2001, Patterns in spatial point locations: local indicators of spatial association in a minefield with clutter, Nav. Res. Logist., 48, 333, 10.1002/nav.1022 Cuzick, 1990, Spatial clustering for inhomogeneous populations (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 52, 73 Daley, 1988 Daley, 2003 Dasgupta, 1998, Detecting features in spatial point processes with clutter via model-based clustering, J. Amer. Statist. Assoc., 93, 294, 10.1080/01621459.1998.10474110 Diggle, 1979, On parameter estimation and goodness-of-fit testing for spatial point patterns, Biometrika, 35, 87, 10.2307/2529938 Diggle, 1985, A Kernel method for smoothing point process data, J. Roy. Statist. Soc. Ser. C, 34, 138 Diggle, 1984, Monte Carlo methods of inference for implicit statistical models (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 46, 193 Diggle, 1976, Statistical analysis of spatial point patterns by means of distance methods, Biometrics, 32, 659, 10.2307/2529754 Eguchi, 1983, Second order efficiency of minimum contrast estimators in a curved exponential family, Ann. Statist., 11, 793, 10.1214/aos/1176346246 Fan, 2009 Fotheringham, 2003 Foxall, 2002, Nonparametric measures of association between a spatial point process and a random set, with geological applications, Appl. Stat., 51, 165 Gangnon, 2001, A weighted average likelihood ratio test for spatial clustering of disease, Stat. Med., 20, 2977, 10.1002/sim.917 Getis, 1987, Second-order neighbourhood analysis of mapped point patterns, Ecology, 68, 473, 10.2307/1938452 Geyer, 1999, Likelihood inference for spatial point processes, number 80, 79 Guan, 2006, A composite likelihood approach in fitting spatial point process models, J. Amer. Statist. Assoc., 101, 1502, 10.1198/016214506000000500 Guan, 2008, On consistent nonparametric intensity estimation for inhomogeneous spatial point processes, J. Amer. Statist. Assoc., 103, 1238, 10.1198/016214508000000526 Guan, 2015, Quasi-likelihood for spatial point processes, J. R. Stat. Soc. Ser. B Stat. Methodol., 77, 677, 10.1111/rssb.12083 Guan, 2010, A weighted estimating equation approach for inhomogeneous spatial point processes, Biometrika, 97, 867, 10.1093/biomet/asq043 Hahn, 2003, Inhomogeneous spatial point processes by location-dependent scaling, Adv. Appl. Probab. (SGSA), 35, 319, 10.1239/aap/1051201648 Hahn, 1999, Stereological analysis and modelling of gradient structures, J. Microsc., 195, 113, 10.1046/j.1365-2818.1999.00487.x Hall, 1995, On bandwidth choice for density estimation with dependent data, Ann. Statist., 23, 2241, 10.1214/aos/1034713655 Hart, 1990, Data-driven bandwidth choice for density-estimation based on dependent data, Ann. Statist., 18, 873, 10.1214/aos/1176347630 Hastie, 1993, Local regression: automatic Kernel carpentry, Statist. Sci., 8, 120, 10.1214/ss/1177011002 Heikkinen, 1998, Non-parametric Bayesian estimation of a spatial Poisson intensity, Scand. J. Statist., 25, 435, 10.1111/1467-9469.00114 Hjort, 1996, Locally parametric density estimation, Ann. Statist., 24, 1619, 10.1214/aos/1032298288 Hossain, 2006, Cluster detection diagnostics for small-area health data: with reference to evaluation of local likelihood models, Stat. Med., 25, 771, 10.1002/sim.2401 Hough, 2006, Determinantal processes and independence, Probab. Surv., 3, 206, 10.1214/154957806000000078 Illian, 2008 Imhof, 1961, Computing the distribution of quadratic forms in normal variables, Biometrika, 48, 419, 10.1093/biomet/48.3-4.419 Jensen, 2004, Statistical inference for transformation inhomogeneous point processes, Scand. J. Statist., 31, 131, 10.1111/j.1467-9469.2004.00377.x Jensen, 2000, Inhomogeneous Markov point processes by transformation, Bernoulli, 6, 761, 10.2307/3318755 Jensen, 1994, On asymptotic normality of Pseudo likelihood estimates for pairwise interaction processes, Ann. Inst. Statist. Math., 46, 475, 10.1007/BF00773511 Jensen, 1991, Pseudolikelihood for exponential family models of spatial point processes, Ann. Appl. Probab., 1, 445, 10.1214/aoap/1177005877 Kelly, 1976, A note on Strauss’s model for clustering, Biometrika, 63, 357, 10.1093/biomet/63.2.357 Kim, 1997, Asymptotically optimal bandwidth selection rules for the Kernel density estimator with dependent observations, J. Statist. Plann. Inference, 59, 321, 10.1016/S0378-3758(96)00117-6 Krickeberg, 1982, Processus ponctuels en statistique, vol. 929, 205 Kulldorff, 1999, Spatial scan statistics: models, calculations, and applications, 303 Kutoyants, 1998, Number 134 Lavancier, 2015, Determinantal point process models and statistical inference, J. R. Stat. Soc. Ser. B Stat. Methodol., 10.1111/rssb.12096 Lewis, 1972, Recent results in the statistical analysis of univariate point processes, 1 Liang, 2009, Bayesian wombling for spatial point processes, Biometrics, 65, 1243, 10.1111/j.1541-0420.2009.01203.x Lindsay, 1988, Composite likelihood, number 80, 221 Lloyd, 2011 Loader, 1996, Local likelihood and density estimation, Ann. Statist., 24, 1602, 10.1214/aos/1032298287 Loader, 1999 Loader, C., 2010. locfit: Local Regression, Likelihood and Density Estimation. URL: http://CRAN.R-project.org/package=locfit. R package version 1.5-6. Mase, 1995, Consistency of the maximum Pseudo-likelihood estimator of continuous state space Gibbsian processes, Ann. Appl. Probab., 5, 603, 10.1214/aoap/1177004697 Mase, 1999, Marked Gibbs processes and asymptotic normality of maximum Pseudo-likelihood estimators, Math. Nachr., 209, 151, 10.1002/(SICI)1522-2616(200001)209:1<151::AID-MANA151>3.0.CO;2-J Mecke, 1967, Stationäre zufällige maße auf lokalkompakten abelschen gruppen, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 9, 36, 10.1007/BF00535466 Molenberghs, 2005 Møller, 2004 Naus, 1965, The distribution of the size of the maximum cluster of points on the line, J. Amer. Statist. Assoc., 60, 532, 10.1080/01621459.1965.10480810 Nielsen, 2004, Statistical inference for transformation inhomogeneous Markov point processes, Scand. J. Statist., 31, 131, 10.1111/j.1467-9469.2004.00377.x Ogata, 1989, Statistical model for standard seismicity and detection of anomalies by residual analysis, Tectonophysics, 169, 159, 10.1016/0040-1951(89)90191-1 Ogata, 1988, Likelihood analysis of spatial inhomogeneity for marked point patterns, Ann. Inst. Statist. Math., 40, 29, 10.1007/BF00053953 Ogata, 1991, Maximum likelihood estimates of the fractal dimension for random spatial patterns, Biometrika, 78, 463, 10.1093/biomet/78.3.463 Ogata, 1989, Likelihood estimation of soft-core interaction potentials for Gibbsian point patterns, Ann. Inst. Statist. Math., 41, 583, 10.1007/BF00050670 Openshaw, 1987, A mark 1 geographical analysis machine for the automated analysis of point data sets, Int. J. Geogr. Inf. Syst., 1, 335, 10.1080/02693798708927821 Osborne, 2007, Non-stationarity and local approaches to modelling the distributions of wildlife, Divers. Distrib., 13, 313, 10.1111/j.1472-4642.2007.00344.x Pace, 2011, Adjusting composite likelihood ratio statistics, Statist. Sinica, 21, 129 Pace, 2015, Inference from Pseudolikelihoods with plug-in estimates, Aust. N. Z. J. Stat., 57, 347, 10.1111/anzs.12121 Papangelou, 1974, The conditional intensity of general point processes and an application to line processes, Z. Wahscheinlichkeitstheor. Verwandte Geb., 28, 207, 10.1007/BF00533242 Pfanzagl, 1969, On the measurability and consistency of minimum contrast estimates, Metrika, 14, 249, 10.1007/BF02613654 Pfanzagl, 1994 Prokes˘ová, 2005, Statistics for locally scaled point processes, number 185, 99 Rathbun, 1994, Asymptotic properties of estimators of the parameters of spatial inhomogeneous Poisson point processes, Adv. Appl. Probab., 26, 122, 10.2307/1427583 Renner, 2013, Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology, Biometrics, 69, 274, 10.1111/j.1541-0420.2012.01824.x Ripley, 1976, The second-order analysis of stationary point processes, J. Appl. Probab., 13, 255, 10.2307/3212829 Ripley, 1977, Modelling spatial patterns (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 39, 172 Ripley, 1981 Ripley, 1977, Markov point processes, J. Lond. Math. Soc., 15, 188, 10.1112/jlms/s2-15.1.188 Roeder, 1990, Density estimation with confidence sets exemplified by superclusters and voids in the galaxies, J. Amer. Statist. Assoc., 85, 617, 10.1080/01621459.1990.10474918 Satterthwaite, 1946, An approximate distribution of estimates of variance components, Biom. Bull., 2, 110, 10.2307/3002019 Schoenberg, 2016, A note on the consistent estimation of spatial–temporal point process parameters, Statist. Sinica, 26, 861 Solomon, M., Groves, D., 2000. The Geology and Origin of Australia’s Mineral Deposits. Centre for Ore Deposit Research, University of Tasmania and Centre for Global Metallogeny, University of Western Australia, Hobart, Tasmania. First published by Oxford University Press 1994. Reprinted with additional material 2000. With a contribution by A.L. Jacques. Stoyan, 1995 Strauss, 1975, A model for clustering, Biometrika, 62, 467, 10.1093/biomet/62.2.467 Tanaka, 2008, Parameter estimation and model selection for Neyman-Scott point processes, Biom. J., 50, 43, 10.1002/bimj.200610339 Thomas, 1949, A generalisation of Poisson’s binomial limit for use in ecology, Biometrika, 36, 18, 10.1093/biomet/36.1-2.18 Tukey, J., 1972. Discussion of paper by F.P. Agterberg and S.C. Robinson. Bulletin of the International Statistical Institute 44, 596. Proceedings, 38th 1430 Congress, International Statistical Institute. van Lieshout, 2000 Varin, 2011, An overview of composite likelihood methods, Statist. Sinica, 21, 5 Waagepetersen, 2007, An estimating function approach to inference for inhomogeneous Neyman-Scott processes, Biometrics, 63, 252, 10.1111/j.1541-0420.2006.00667.x Waagepetersen, 2009, Two-step estimation for inhomogeneous spatial point processes, J. R. Stat. Soc. Ser. B Stat. Methodol., 71, 685, 10.1111/j.1467-9868.2008.00702.x Wager, 2004, Modelling spatial intensity for replicated inhomogeneous point patterns in brain imaging, J. R. Stat. Soc. Ser. B Stat. Methodol., 66, 429, 10.1046/j.1369-7412.2003.05285.x Walsh, 2002, Detecting mines in minefields with linear characteristics, Technometrics, 44, 34, 10.1198/004017002753398308 Walsh, 2005, Classification of mixtures of spatial point processes via partial Bayes factors, J. Comput. Graph. Statist., 14, 139, 10.1198/106186005X27149 Warton, 2010, Poisson point process models solve the Pseudo-absence problem for presence-only data in ecology, Ann. Appl. Stat., 4, 1383, 10.1214/10-AOAS331 Yue, 2011, Bayesian semiparametric intensity estimation for inhomogeneous spatial point processes, Biometrics, 67, 937, 10.1111/j.1541-0420.2010.01531.x Zhuang, 2015, Weighted likelihood estimators for point processes, Spat. Stat., 14, 166, 10.1016/j.spasta.2015.07.009 Zimmerman, 1991, Censored distance-based intensity estimation of spatial point processes, Biometrika, 78, 287, 10.1093/biomet/78.2.287