Local composite likelihood for spatial point processes
Tài liệu tham khảo
Agterberg, 1974, Automatic contouring of geological maps to detect target areas for mineral exploration, J. Int. Assoc. Math. Geol., 6, 373, 10.1007/BF02082358
Allard, 1997, Nonparametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation, J. Amer. Statist. Assoc., 92, 1485
Alm, 1998, Approximation and simulation of the distributions of scan statistics for Poisson processes in higher dimensions, Extremes, 1, 111, 10.1023/A:1009965918058
Anderssen, 2014, Solution of an integral equation arising in spatial point process theory, J. Integral Equations Appl., 26, 437, 10.1216/JIE-2014-26-4-437
Anselin, 1995, Local indicators of spatial association–LISA, Geogr. Anal., 27, 93, 10.1111/j.1538-4632.1995.tb00338.x
Baddeley, 2000, Time-invariance estimating equations, Bernoulli, 6, 783, 10.2307/3318756
Baddeley, 2010, Spatial logistic regression and change-of-support for Poisson point processes, Electron. J. Stat., 4, 1151, 10.1214/10-EJS581
Baddeley, 2013, Leverage and influence diagnostics for spatial point processes, Scand. J. Statist., 40, 86, 10.1111/j.1467-9469.2011.00786.x
Baddeley, 2013, Residual diagnostics for covariate effects in spatial point process models, J. Comput. Graph. Statist., 22, 886, 10.1080/10618600.2012.721737
Baddeley, 2014, Logistic regression for spatial Gibbs point processes, Biometrika, 101, 377, 10.1093/biomet/ast060
Baddeley, 2008, Properties of residuals for spatial point processes, Ann. Inst. Statist. Math., 60, 627, 10.1007/s10463-007-0116-6
Baddeley, 2012, Approximating the moments of a spatial point process, Stat, 1, 18, 10.1002/sta4.5
Baddeley, 2012, Fast approximation of the intensity of Gibbs point processes, Electron. J. Stat., 6, 1155, 10.1214/12-EJS707
Baddeley, A., Nair, G., 2016. Poisson-saddlepoint approximation for spatial point processes with infinite-order interaction. (submitted for publication).
Baddeley, 2015
Baddeley, 2000, Practical maximum Pseudo likelihood for spatial point patterns (with discussion), Aust. N. Z. J. Stat., 42, 283, 10.1111/1467-842X.00128
Baddeley, 2005, Spatstat: an R package for analyzing spatial point patterns, J. Stat. Softw., 12, 1, 10.18637/jss.v012.i06
Baddeley, 2005, Residual analysis for spatial point processes (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 67, 617, 10.1111/j.1467-9868.2005.00519.x
Baddeley, 2016, Adjusted composite likelihood ratio test for spatial Gibbs point processes, J. Stat. Comput. Simul., 86, 922, 10.1080/00949655.2015.1044530
Baddeley, 1995, Area-interaction point processes, Ann. Inst. Statist. Math., 47, 601, 10.1007/BF01856536
Banfield, 1993, Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803, 10.2307/2532201
Berman, 1986, Testing for spatial association between a point process and another stochastic process, Appl. Stat., 35, 54, 10.2307/2347865
Berman, 1989, Estimating weighted integrals of the second-order intensity of a spatial point process, J. R. Stat. Soc. Ser. B Stat. Methodol., 51, 81
Berman, 1992, Approximating point process likelihoods with GLIM, Appl. Stat., 41, 31, 10.2307/2347614
Bernhardt, R., Meyer-Olbersleben, F., Kieback, B., 1997. Fundamental investigation on the preparation of gradient structures by sedimentation of different powder fractions under gravity, In: Hui, D. (Ed.), Proceedings of the 4th International Conference on Composite Engineering, ICCE/4, July 6–12 1997, Hawaii. pp. 147–148.
Besag, 1977, Some methods of statistical analysis for spatial data, Bull. Int. Statist. Inst., 47, 77
Besag, 1991, The detection of clusters in rare diseases, J. Roy. Statist. Soc. Ser. A, 154, 143, 10.2307/2982708
Billiot, 2008, Maximum Pseudolikelihood estimator for exponential family models of marked Gibbs processes, Electron. J. Stat., 2, 234, 10.1214/07-EJS160
Bithell, 1990, An application of density estimation to geographical epidemiology, Stat. Med., 9, 691, 10.1002/sim.4780090616
Bonham-Carter, 1995, Number 13
Brigham, 1992
Brillinger, 1977, Contribution to discussion of Stone (1977), Ann. Statist., 5, 622
Brillinger, 1978, Comparative aspects of the study of ordinary time series and of point processes, 33
Brillinger, 1990, Spatial–temporal modelling of spatially aggregate birth data, Surv. Methodol., 16, 255
Brillinger, 1986, Two examples of quantal data analysis: (a) multivariate point process, (b) pure death process in an experimental design, 94
Brillinger, 1979, Empirical examination of the Threshold model of neuron firing, Biol. Cybernet., 35, 213, 10.1007/BF00344204
Burman, 1992, Data-dependent estimation of prediction functions, J. Time Series Anal., 13, 189, 10.1111/j.1467-9892.1992.tb00102.x
Byers, 1998, Nearest-neighbour clutter removal for estimating features in spatial point processes, J. Amer. Statist. Assoc., 93, 577, 10.1080/01621459.1998.10473711
Carranza, 2009, Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features, Ore Geol. Rev., 35, 383, 10.1016/j.oregeorev.2009.01.001
Carroll, 1998, Local estimating equations, J. Amer. Statist. Assoc., 93, 214, 10.1080/01621459.1998.10474103
Chan, 2009, Detection of spatial clustering with average likelihood ratio test statistics, Amer. Statist., 37, 3985
Clyde, 1991, Logistic regression for spatial pair-potential models, vol. 20, 14, 10.1214/lnms/1215460490
Coeurjolly, 2013, Fast covariance estimation for innovations computed from a spatial Gibbs point process, Scand. J. Statist., 40, 669, 10.1111/sjos.12017
Cressie, 2001, Analysis of spatial point patterns using bundles of product density LISA functions, J. Agric. Biol. Environ. Stat., 6, 118, 10.1198/108571101300325292
Cressie, 2001, Patterns in spatial point locations: local indicators of spatial association in a minefield with clutter, Nav. Res. Logist., 48, 333, 10.1002/nav.1022
Cuzick, 1990, Spatial clustering for inhomogeneous populations (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 52, 73
Daley, 1988
Daley, 2003
Dasgupta, 1998, Detecting features in spatial point processes with clutter via model-based clustering, J. Amer. Statist. Assoc., 93, 294, 10.1080/01621459.1998.10474110
Diggle, 1979, On parameter estimation and goodness-of-fit testing for spatial point patterns, Biometrika, 35, 87, 10.2307/2529938
Diggle, 1985, A Kernel method for smoothing point process data, J. Roy. Statist. Soc. Ser. C, 34, 138
Diggle, 1984, Monte Carlo methods of inference for implicit statistical models (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 46, 193
Diggle, 1976, Statistical analysis of spatial point patterns by means of distance methods, Biometrics, 32, 659, 10.2307/2529754
Eguchi, 1983, Second order efficiency of minimum contrast estimators in a curved exponential family, Ann. Statist., 11, 793, 10.1214/aos/1176346246
Fan, 2009
Fotheringham, 2003
Foxall, 2002, Nonparametric measures of association between a spatial point process and a random set, with geological applications, Appl. Stat., 51, 165
Gangnon, 2001, A weighted average likelihood ratio test for spatial clustering of disease, Stat. Med., 20, 2977, 10.1002/sim.917
Getis, 1987, Second-order neighbourhood analysis of mapped point patterns, Ecology, 68, 473, 10.2307/1938452
Geyer, 1999, Likelihood inference for spatial point processes, number 80, 79
Guan, 2006, A composite likelihood approach in fitting spatial point process models, J. Amer. Statist. Assoc., 101, 1502, 10.1198/016214506000000500
Guan, 2008, On consistent nonparametric intensity estimation for inhomogeneous spatial point processes, J. Amer. Statist. Assoc., 103, 1238, 10.1198/016214508000000526
Guan, 2015, Quasi-likelihood for spatial point processes, J. R. Stat. Soc. Ser. B Stat. Methodol., 77, 677, 10.1111/rssb.12083
Guan, 2010, A weighted estimating equation approach for inhomogeneous spatial point processes, Biometrika, 97, 867, 10.1093/biomet/asq043
Hahn, 2003, Inhomogeneous spatial point processes by location-dependent scaling, Adv. Appl. Probab. (SGSA), 35, 319, 10.1239/aap/1051201648
Hahn, 1999, Stereological analysis and modelling of gradient structures, J. Microsc., 195, 113, 10.1046/j.1365-2818.1999.00487.x
Hall, 1995, On bandwidth choice for density estimation with dependent data, Ann. Statist., 23, 2241, 10.1214/aos/1034713655
Hart, 1990, Data-driven bandwidth choice for density-estimation based on dependent data, Ann. Statist., 18, 873, 10.1214/aos/1176347630
Hastie, 1993, Local regression: automatic Kernel carpentry, Statist. Sci., 8, 120, 10.1214/ss/1177011002
Heikkinen, 1998, Non-parametric Bayesian estimation of a spatial Poisson intensity, Scand. J. Statist., 25, 435, 10.1111/1467-9469.00114
Hjort, 1996, Locally parametric density estimation, Ann. Statist., 24, 1619, 10.1214/aos/1032298288
Hossain, 2006, Cluster detection diagnostics for small-area health data: with reference to evaluation of local likelihood models, Stat. Med., 25, 771, 10.1002/sim.2401
Hough, 2006, Determinantal processes and independence, Probab. Surv., 3, 206, 10.1214/154957806000000078
Illian, 2008
Imhof, 1961, Computing the distribution of quadratic forms in normal variables, Biometrika, 48, 419, 10.1093/biomet/48.3-4.419
Jensen, 2004, Statistical inference for transformation inhomogeneous point processes, Scand. J. Statist., 31, 131, 10.1111/j.1467-9469.2004.00377.x
Jensen, 2000, Inhomogeneous Markov point processes by transformation, Bernoulli, 6, 761, 10.2307/3318755
Jensen, 1994, On asymptotic normality of Pseudo likelihood estimates for pairwise interaction processes, Ann. Inst. Statist. Math., 46, 475, 10.1007/BF00773511
Jensen, 1991, Pseudolikelihood for exponential family models of spatial point processes, Ann. Appl. Probab., 1, 445, 10.1214/aoap/1177005877
Kelly, 1976, A note on Strauss’s model for clustering, Biometrika, 63, 357, 10.1093/biomet/63.2.357
Kim, 1997, Asymptotically optimal bandwidth selection rules for the Kernel density estimator with dependent observations, J. Statist. Plann. Inference, 59, 321, 10.1016/S0378-3758(96)00117-6
Krickeberg, 1982, Processus ponctuels en statistique, vol. 929, 205
Kulldorff, 1999, Spatial scan statistics: models, calculations, and applications, 303
Kutoyants, 1998, Number 134
Lavancier, 2015, Determinantal point process models and statistical inference, J. R. Stat. Soc. Ser. B Stat. Methodol., 10.1111/rssb.12096
Lewis, 1972, Recent results in the statistical analysis of univariate point processes, 1
Liang, 2009, Bayesian wombling for spatial point processes, Biometrics, 65, 1243, 10.1111/j.1541-0420.2009.01203.x
Lindsay, 1988, Composite likelihood, number 80, 221
Lloyd, 2011
Loader, 1996, Local likelihood and density estimation, Ann. Statist., 24, 1602, 10.1214/aos/1032298287
Loader, 1999
Loader, C., 2010. locfit: Local Regression, Likelihood and Density Estimation. URL: http://CRAN.R-project.org/package=locfit. R package version 1.5-6.
Mase, 1995, Consistency of the maximum Pseudo-likelihood estimator of continuous state space Gibbsian processes, Ann. Appl. Probab., 5, 603, 10.1214/aoap/1177004697
Mase, 1999, Marked Gibbs processes and asymptotic normality of maximum Pseudo-likelihood estimators, Math. Nachr., 209, 151, 10.1002/(SICI)1522-2616(200001)209:1<151::AID-MANA151>3.0.CO;2-J
Mecke, 1967, Stationäre zufällige maße auf lokalkompakten abelschen gruppen, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 9, 36, 10.1007/BF00535466
Molenberghs, 2005
Møller, 2004
Naus, 1965, The distribution of the size of the maximum cluster of points on the line, J. Amer. Statist. Assoc., 60, 532, 10.1080/01621459.1965.10480810
Nielsen, 2004, Statistical inference for transformation inhomogeneous Markov point processes, Scand. J. Statist., 31, 131, 10.1111/j.1467-9469.2004.00377.x
Ogata, 1989, Statistical model for standard seismicity and detection of anomalies by residual analysis, Tectonophysics, 169, 159, 10.1016/0040-1951(89)90191-1
Ogata, 1988, Likelihood analysis of spatial inhomogeneity for marked point patterns, Ann. Inst. Statist. Math., 40, 29, 10.1007/BF00053953
Ogata, 1991, Maximum likelihood estimates of the fractal dimension for random spatial patterns, Biometrika, 78, 463, 10.1093/biomet/78.3.463
Ogata, 1989, Likelihood estimation of soft-core interaction potentials for Gibbsian point patterns, Ann. Inst. Statist. Math., 41, 583, 10.1007/BF00050670
Openshaw, 1987, A mark 1 geographical analysis machine for the automated analysis of point data sets, Int. J. Geogr. Inf. Syst., 1, 335, 10.1080/02693798708927821
Osborne, 2007, Non-stationarity and local approaches to modelling the distributions of wildlife, Divers. Distrib., 13, 313, 10.1111/j.1472-4642.2007.00344.x
Pace, 2011, Adjusting composite likelihood ratio statistics, Statist. Sinica, 21, 129
Pace, 2015, Inference from Pseudolikelihoods with plug-in estimates, Aust. N. Z. J. Stat., 57, 347, 10.1111/anzs.12121
Papangelou, 1974, The conditional intensity of general point processes and an application to line processes, Z. Wahscheinlichkeitstheor. Verwandte Geb., 28, 207, 10.1007/BF00533242
Pfanzagl, 1969, On the measurability and consistency of minimum contrast estimates, Metrika, 14, 249, 10.1007/BF02613654
Pfanzagl, 1994
Prokes˘ová, 2005, Statistics for locally scaled point processes, number 185, 99
Rathbun, 1994, Asymptotic properties of estimators of the parameters of spatial inhomogeneous Poisson point processes, Adv. Appl. Probab., 26, 122, 10.2307/1427583
Renner, 2013, Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology, Biometrics, 69, 274, 10.1111/j.1541-0420.2012.01824.x
Ripley, 1976, The second-order analysis of stationary point processes, J. Appl. Probab., 13, 255, 10.2307/3212829
Ripley, 1977, Modelling spatial patterns (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 39, 172
Ripley, 1981
Ripley, 1977, Markov point processes, J. Lond. Math. Soc., 15, 188, 10.1112/jlms/s2-15.1.188
Roeder, 1990, Density estimation with confidence sets exemplified by superclusters and voids in the galaxies, J. Amer. Statist. Assoc., 85, 617, 10.1080/01621459.1990.10474918
Satterthwaite, 1946, An approximate distribution of estimates of variance components, Biom. Bull., 2, 110, 10.2307/3002019
Schoenberg, 2016, A note on the consistent estimation of spatial–temporal point process parameters, Statist. Sinica, 26, 861
Solomon, M., Groves, D., 2000. The Geology and Origin of Australia’s Mineral Deposits. Centre for Ore Deposit Research, University of Tasmania and Centre for Global Metallogeny, University of Western Australia, Hobart, Tasmania. First published by Oxford University Press 1994. Reprinted with additional material 2000. With a contribution by A.L. Jacques.
Stoyan, 1995
Strauss, 1975, A model for clustering, Biometrika, 62, 467, 10.1093/biomet/62.2.467
Tanaka, 2008, Parameter estimation and model selection for Neyman-Scott point processes, Biom. J., 50, 43, 10.1002/bimj.200610339
Thomas, 1949, A generalisation of Poisson’s binomial limit for use in ecology, Biometrika, 36, 18, 10.1093/biomet/36.1-2.18
Tukey, J., 1972. Discussion of paper by F.P. Agterberg and S.C. Robinson. Bulletin of the International Statistical Institute 44, 596. Proceedings, 38th 1430 Congress, International Statistical Institute.
van Lieshout, 2000
Varin, 2011, An overview of composite likelihood methods, Statist. Sinica, 21, 5
Waagepetersen, 2007, An estimating function approach to inference for inhomogeneous Neyman-Scott processes, Biometrics, 63, 252, 10.1111/j.1541-0420.2006.00667.x
Waagepetersen, 2009, Two-step estimation for inhomogeneous spatial point processes, J. R. Stat. Soc. Ser. B Stat. Methodol., 71, 685, 10.1111/j.1467-9868.2008.00702.x
Wager, 2004, Modelling spatial intensity for replicated inhomogeneous point patterns in brain imaging, J. R. Stat. Soc. Ser. B Stat. Methodol., 66, 429, 10.1046/j.1369-7412.2003.05285.x
Walsh, 2002, Detecting mines in minefields with linear characteristics, Technometrics, 44, 34, 10.1198/004017002753398308
Walsh, 2005, Classification of mixtures of spatial point processes via partial Bayes factors, J. Comput. Graph. Statist., 14, 139, 10.1198/106186005X27149
Warton, 2010, Poisson point process models solve the Pseudo-absence problem for presence-only data in ecology, Ann. Appl. Stat., 4, 1383, 10.1214/10-AOAS331
Yue, 2011, Bayesian semiparametric intensity estimation for inhomogeneous spatial point processes, Biometrics, 67, 937, 10.1111/j.1541-0420.2010.01531.x
Zhuang, 2015, Weighted likelihood estimators for point processes, Spat. Stat., 14, 166, 10.1016/j.spasta.2015.07.009
Zimmerman, 1991, Censored distance-based intensity estimation of spatial point processes, Biometrika, 78, 287, 10.1093/biomet/78.2.287