Local and Global Existence Theorems for the Einstein Equations
Tóm tắt
This article is a guide to the literature on existence theorems for the Einstein equations which also draws attention to open problems in the field. The local in time Cauchy problem, which is relatively well understood, is treated first. Next global results for solutions with symmetry are discussed. A selection of results from Newtonian theory and special relativity which offer useful comparisons is presented. This is followed by a survey of global results in the case of small data and results on constructing spacetimes with given singularity structure. The article ends with some miscellaneous topics connected with the main theme.
Tài liệu tham khảo
Andersson, L., “The global existence problem in general relativity”, (November, 1999), [Online Los Alamos Archive Preprint]: cited on 4 December 1999, http://xxx.lanl.gov/abs/gr-qc/9911032. 5.3
Andersson, L., Chruściel, P. T., and Friedrich, H., “On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations”, Commun. Math. Phys., 149, 587–612, (1992). 2.1
Andréasson, H., “Regularity of the gain term and strong L1 convergence to equilibrium for the relativistic Boltzmann equation”, SIAM J. Math. Anal., 27, 1386–1405, (1996). 4.2
Andréasson, H., “Global foliations of matter spacetimes with Gowdy symmetry”, Commun. Math. Phys., 206, 337–365, (1999). 3.5
Anguige, K., “Isotropic cosmological singularities 3: The Cauchy problem for the inhomogeneous conformal Einstein-Vlasov equations”, (March, 1999), [Online Los Alamos Archive Preprint]: cited on 21 September 1999, http://xxx.lanl.gov/abs/gr-qc/9903018. 6.1
Anguige, K., “A class of plane symmetric perfect-fluid cosmologies with a Kasner-like singularity”, (August, 1999), [Online Los Alamos Archive Preprint]: cited on 21 September 1999, http://xxx.lanl.gov/abs/gr-qc/9908072. 6.2
Anguige, K., and Tod, K. P., “Isotropic cosmological singularities 1: Poly-tropic perfect fluid spacetimes”, Ann. Phys. (N. Y.), 276, 257–293, (1999). 6.1
Anguige, K., and Tod, K. P., “Isotropic cosmological singularities 2: The Einstein-Vlasov system”, Ann. Phys. (N. Y.), 276, 294–320, (1999). 6.1
Arkeryd, L., “On the strong L1 trend to equilibrium for the Boltzmann equation”, Stud. Appl. Math., 87, 283–288, (1992). 4.2
Arnold, V. I., and Ilyashenko, Yu. S., “Ordinary differential equations”, in Anosov, D.V., and Arnold, V.I., eds., Dynamical Systems I., 1–148, (Springer, Berlin, 1988). 1
Aubin, T., Nonlinear Analysis on Manifolds. Monge-Ampère equations, (Springer, Berlin, 1982). 2.3
Baouendi, M. S., and Goulaouic, C., “Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theorems”, Commun. Part. Diff. Eq., 2,1151–1162, (1977). 6.2
Bartnik, R., “Remarks on cosmological spacetimes and constant mean curvature hypersurfaces”, Commun. Math. Phys., 117, 615–624, (1988). 2.1
Bartnik, R., “Quasi-spherical metrics and prescribed scalar curvature”, J. Differ. Geom., 37, 31–71, (1993). 2.1
Bartnik, R., and Fodor, G., “On the restricted validity of the thin sandwich conjecture”, Phys. Rev. D, 48, 3596–3599, (1993). 2.1
Bartnik, R., and McKinnon, J., “Particlelike solutions of the Einstein-Yang-Mills equations”, Phys. Rev. Lett., 61, 141–143, (1988). 3.1
Batt, J., Faltenbacher, W., and Horst, E., “Stationary spherically symmetric models in stellar dynamics”, Arch. Rat. Mech. Anal., 93, 159–183,(1986). 3.1
Beale, J. T., Hou, T. Y., and Lowengrub, J. S., “Growth rates for the linearized motion of fluid interfaces away from equilibrium”, Commun. Pure Appl. Math., 46, 1269–1301, (1993). 2.5
Belinskii, V. A., Khalatnikov, I. M., and Lifshitz, E. M., “Oscillatory approach to a singular point in the relativistic cosmology”, Adv. Phys.,19, 525–573, (1970). 3.2
Belinskii, V. A., Khalatnikov, I. M., and Lifshitz, E. M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 31,639–667, (1982). 3.2
Berger, B. K., Chruściel, P. T., Isenberg, J., and Moncrief, V., “Global foliations of vacuum spacetimes with T2 isometry”, Ann. Phys. (N. Y.),260, 117–148, (1997). 3.5
Berger, B. K., Chruściel, P. T., and Moncrief, V., “On asymptotically flat spacetimes with G2-invariant Cauchy surfaces”, Ann. Phys. (N. Y.), 237,322–354, (1995). 3.4
Beyer, H., “The spectrum of adiabatic stellar oscillations”, J. Math. Phys.,36, 4792–4814, (1995). 4.1
Binney, J., and Tremaine, S., Galactic dynamics, (Princeton University Press, Princeton, 1987). 3.1
Bourguignon, J.-P., “Stabilité par déformation non-linéaire de la métrique de Minkowski (d’après D. Christodoulou et S. Klainerman)”, Astérisque,201-203, 321–358, (1992). 5.2
Brauer, U., “Singularitäten in relativistischen Materiemodellen”, Thesis, University of Potsdam, (1995). 4.1
Brauer, U., Rendall, A. D., and Reula, O. A., “The cosmic no-hair theorem and the nonlinear stability of homogeneous Newtonian cosmological models”, Class. Quantum Grav., 11, 2283–2296, (1994). 7.3
Bressan, A., “The unique limit of the Glimm scheme”, Arch. Rat. Mech. Anal., 130, 205–230, (1995). 4.1
Bressan, A., and Colombo, R. M., “The semigroup generated by 2 × 2 conservation laws”, Arch. Rat. Mech. Anal., 133, 1–75, (1995). 4.1
Brodbeck, O., Heusler, M., Straumann, N., and Volkov, M., “Rotating solitons and non-rotating non-static black holes”, Phys. Rev. Lett., 79,4310–4313, (1997). 3.1
Burnett, G. A., and Rendall, A. D., “Existence of maximal hypersurfaces in some spherically symmetric spacetimes”, Class. Quantum Grav., 13,111–123, (1996). 3.5
Cantor, M., “A necessary and sufficient condition for York data to specify an asymptotically flat spacetime”, J. Math. Phys., 20, 1741–1744, (1979). 2.1
Cercignani, C., The Boltzmann equation and its applications, (Springer, Berlin, 1994). 4.2
Cercignani, C., Illner, R., and Pulvirenti, M., The mathematical theory of dilute gases, (Springer, Berlin, 1988). 4.2
Chemin, J.-Y., “Remarques sur l’apparition de singularités dans les écoulements Euleriens compressibles”, Commun. Math. Phys., 133, 323339, (1990). 4.1
Chen, J., “Conservation laws for the relativistic p-system”, Commun. Part. Diff. Eq., 20, 1605–1646, (1995). 4.1
Chen, J., “Conservation laws for relativistic fluid dynamics”, Arch. Rat. Mech. Anal., 139, 377–398, (1997). 4.1
Choptuik, M. W., “Universality and scaling in the gravitational collapse of a scalar field”, Phys. Rev. Lett., 70, 9–12, (1993). 3.3
Choquet-Bruhat, Y., and Geroch, R., “Global aspects of the Cauchy problem in general relativity”, Commun. Math. Phys., 14, 329–335, (1969). 2.2
Choquet-Bruhat, Y., Isenberg, J., and York, J. W., “Einstein constraints on asymptotically Euclidean manifolds”, (June, 1999), [Online Los Alamos Archive Preprint]: cited on 20 August 1999, http://xxx.lanl.gov/abs/gr-qc/9906095. 2.1
Choquet-Bruhat, Y., and York, J., “The Cauchy problem”, in Held, A., ed., General relativity and gravitation, volume 1, 99–172, (Plenum, New York, 1980). 2.1, 2.2
Christodoulou, D., “Global existence of generalised solutions of the spherically symmetric Einstein-scalar equations in the large”, Commun. Math. Phys., 106, 587–621, (1986). 3.3
Christodoulou, D., “The problem of a self-gravitating scalar field”, Commun. Math. Phys., 105, 337–361, (1986). 3.3
Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys., 109, 613–647, (1987). 3.3
Christodoulou, D., “The structure and uniqueness of generalised solutions of the spherically symmetric Einstein-scalar equations”, Commun. Math. Phys., 109, 591–611, (1987). 3.3
Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991). 3.3
Christodoulou, D., “Bounded variation solutions of the spherically symmetric Einstein-scalar field equations”, Commun. Pure Appl. Math., 46,1131–1220, (1993). 3.3
Christodoulou, D., “Examples of naked singularity formation in the gravitational collapse of a scalar field”, Ann. Math., 140, 607–653, (1994). 3.3
Christodoulou, D., “Self-gravitating fluids: a two-phase model”, Arch. Rat. Mech. Anal., 130, 343–400, (1995). 3.3
Christodoulou, D., “Self-gravitating fluids: the continuation and termination of a free phase boundary”, Arch. Rat. Mech. Anal., 133, 333–398,(1996). 3.3
Christodoulou, D., “Self-gravitating fluids: the formation of a free phase boundary in the phase transition from soft to hard”, Arch. Rat. Mech. Anal., 134, 97–154, (1996). 3.3
Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar field”, Ann. Math., 149, 183–217, (1999). 3.3
Christodoulou, D., and Klainerman, S., “Asymptotic properties of linear field equations in Minkowski space”, Commun. Pure Appl. Math., 43,137–199, (1990). 5.2
Christodoulou, D., and Klainerman, S., The global nonlinear stability of the Minkowski space, (Princeton University Press, Princeton, 1993). 5.2
Christodoulou, D., and Ó Murchadha, N., “The boost problem in general relativity”, Commun. Math. Phys., 10, 271–300, (1981). 2.1, 2.2
Christodoulou, D., and Tahvildar-Zadeh, A. S., “On the asymptotic behaviour of spherically symmetric wave maps”, Duke Math. J., 71, 31–69,(1993). 3.4
Christodoulou, D., and Tahvildar-Zadeh, A. S., “On the regularity of spherically symmetric wave maps”, Commun. Pure Appl. Math., 46, 10411091, (1993). 3.4
Chruściel, P. T., “On spacetimes with U(1) × U(1) symmetric compact Cauchy surfaces”, Ann. Phys. (N. Y.), 202, 100–150, (1990). 3.5
Chruściel, P. T., On the uniqueness in the large of solutions of Einstein’s equations. (Strong cosmic censorship.), volume 20 of Proc. Centre Math. Anal., (Australian National University, Canberra, 1991). 1
Chruściel, P. T., “Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation”, Commun. Math. Phys., 137, 289–313, (1991). 7.4
Chruściel, P. T., Isenberg, J., and Moncrief, V., “Strong cosmic censorship in polarised Gowdy spacetimes”, Class. Quantum Grav., 7, 1671–1680,(1990). 3.5
Claudel, C. M., and Newman, K. P., “The Cauchy problem for quasi-linear hyperbolic evolution problems with a singularity in the time”, Proc. R. Soc. London, Ser. A, 454, 1073–1107, (1998). 6.1
DiPerna, R. J., and Lions, P.-L., “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. Math., 130, 321366, (1989). 4.2
Dossa, M., “Espaces de Sobolev non isotropes, à poids et problèmes de Cauchy quasi-linéaires sur un conoïde caractéristique”, Ann. Inst. Henri Poincaré, A., 66, 37–107, (1997). 7.4
Dudynski, M., and Ekiel-Jezewska, M., “Global existence proof for the relativistic Boltzmann equation”, J. Stat. Phys., 66, 991–1001, (1992). 4.2
Eardley, D., and Moncrief, V., “The global existence of Yang-Mills fields in M3+1”, Commun. Math. Phys., 83, 171–212, (1982). 2.3
Ehlers, J., “The Newtonian limit of general relativity”, in Ferrarese, G., ed., Classical mechanics and relativity: relationship and consistency, (Bibliopolis, Naples, 1991). 7.2
Evans, L. C., Partial differential equations, (American Mathematical Society, Providence, 1998). 1
Friedrich, H., “Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant”, J. Geom. Phys., 3, 101–117, (1986). 5.1
Friedrich, H., “On the global existence and asymptotic behaviour of solutions to the Einstein-Yang-Mills equations”, J. Differ. Geom., 34, 275345, (1991). 7.1
Friedrich, H., “Einstein equations and conformal structure: Existence of anti-de Sitter-type spacetimes”, J. Geom. Phys., 17, 125–184, (1995). 5.1
Friedrich, H., “Hyperbolic reductions of Einstein’s field equations”, Class. Quantum Grav., 13, 1451–1469, (1996). 2.2
Friedrich, H., “Evolution equations for gravitating ideal fluid bodies in general relativity”, Phys. Rev. D, 57, 2317–2322, (1998). 2.5
Friedrich, H., “Gravitational fields near spacelike and null infinity”, J. Geom. Phys., 24, 83–172, (1998). 5.1, 7.1
Friedrich, H., and Nagy, G., “The initial boundary value problem for Einstein’s vacuum field equations”, Commun. Math. Phys., 201, 619–655,(1999). 7.5
Fritelli, S., and Reula, O., “On the Newtonian limit of general relativity”,Commun. Math. Phys., 166, 221–235, (1994). 7.2
Glassey, R. T., and Schaeffer, J., “The ‘two and one half dimensional’ relativistic Vlasov-Maxwell system”, Commun. Math. Phys., 185, 257284, (1997). 4.2
Glassey, R. T., and Schaeffer, J., “The relativistic Vlasov-Maxwell system in two space dimensions. Part 1”, Arch. Rat. Mech. Anal., 141, 331–354,(1998). 4.2
Glassey, R. T., and Schaeffer, J., “The relativistic Vlasov-Maxwell system in two space dimensions. Part 2”, Arch. Rat. Mech. Anal., 141, 355–374,(1998). 4.2
Glassey, R. T., and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Publ. Math. RIMS Kyoto, 29, 167–233, (1993). 4.2
Glimm, J., “Solutions in the large for nonlinear hyperbolic systems of equations”, Commun. Pure Appl. Math., 18, 697–715, (1965). 4.1
Goliath, M., Nilsson, U., and Uggla, C., “Spatially self-similar spherically symmetric perfect-fluid models”, Class. Quantum Grav., 15, 167186, (1998). 3.3
Goliath, M., Nilsson, U., and Uggla, C., “Timelike self-similar spherically symmetric perfect-fluid models”, Class. Quantum Grav., 15, 2841–2863,(1998). 3.3
Grassin, M., “Global smooth solutions to Euler equations for a perfect gas”, Indiana Univ. Math. J., 47, 1397–1432, (1998). 4.1
Gundlach, C., “Critical Phenomena in Gravitational Collapse”, (December, 1999), [Living Reviews in Relativity]: cited on 22 December 1999, http://www.livingreviews.org/Articles/Volume2/1999-4gundlach. 3.3
Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1–49, (1998). 3.3
Guo, Y., “Smooth irrotational flows in the large to the Euler-Poisson system”, Commun. Math. Phys., 195, 249–265, (1998). 4.1
Guo, Y., and Rein, G., “Stable steady states in stellar dynamics”, to appear in Arch. Rat. Mech. Anal. 4.2
Guo, Y., and Tahvildar-Zadeh, A. S., “Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics”, in Chen, G.-Q., and DiBenedetto, E., eds., Nonlinear partial differential equations, (AMS, Providence, 1999). 4.1
Hartman, P., Ordinary Differential Equations, (Birkhäuser, Basel, 1982).1
Hauser, I., and Ernst, F. J., “Group structure of the solution manifold of the hyperbolic Ernst equation — general study of the subject and detailed elaboration of mathematical proofs”, (March, 1999), [Online Los Alamos Archive Preprint]: cited on 4 December 1999, http://xxx.lanl.gov/abs/gr-qc/9903104. 3.4
Heilig, U., “On the existence of rotating stars in general relativity”, Commun. Math. Phys., 166, 457–493, (1995). 3.1
Heusler, M., “Stationary black holes: uniqueness and beyond”, (May, 1998), [Living Reviews in Relativity]: cited on 12 December 1999, http://www.livingreviews.org/Articles/Volume1/1998-6heusler. 3.1
Heusler, M., Black hole uniqueness theorems, (Cambridge University Press, Cambridge, 1996). 3.1
Hubbard, J. H., and West, B. H., Differential equations: a dynamical systems approach., (Springer, Berlin, 1991). 1
Isenberg, J., “Constant mean curvature solutions of the Einstein constraint equations on closed manifolds”, Class. Quantum Grav., 12, 22492274, (1995). 2.1
Isenberg, J., and Kichenassamy, S., “Asymptotic behaviour in polarized T2-symmetric vacuum spacetimes”, J. Math. Phys., 40, 340–352, (1999). 6.2
Isenberg, J., and Moncrief, V., “Asymptotic behaviour of the gravitational field and the nature of singularities in Gowdy spacetimes”, Ann. Phys. (N. Y.), 199, 84–122, (1990). 3.5
Isenberg, J., and Moncrief, V., “A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds”, Class. Quantum Grav., 13, 1819–1847, (1996). 2.1
Isenberg, J., and Rendall, A. D., “Cosmological spacetimes not covered by a constant mean curvature slicing”, Class. Quantum Grav., 15, 36793688, (1998). 3.5
John, F., Partial differential equations, (Springer, Berlin, 1982). 1
John, F., Nonlinear wave equations, formation of singularities, (American Mathematical Society, Providence, 1990). 1
Kichenassamy, S., “The blow-up problem for exponential nonlinearities”, Commun. Part. Diff. Eq., 21, 125–162, (1996). 6.2
Kichenassamy, S., “Fuchsian equations in Sobolev spaces and blow-up”, J. Differ. Equations, 125, 299–327, (1996). 6.2
Kichenassamy, S., Nonlinear wave equations, (Marcel Dekker, New York,1996). 1, 6.2
Kichenassamy, S., and Littman, W., “Blow-up surfaces for nonlinear wave equations, I”, Commun. Part. Diff. Eq., 18, 431–452, (1993). 6.2
Kichenassamy, S., and Littman, W., “Blow-up surfaces for nonlinear wave equations, II”, Commun. Part. Diff. Eq., 18, 1869–1899, (1993). 6.2
Kichenassamy, S., and Rendall, A. D., “Analytic description of singularities in Gowdy spacetimes”, Class. Quantum Grav., 15, 1339–1355, (1998). 6.2
Kind, S., and Ehlers, J., “Initial boundary value problem for the spherically symmetric Einstein equations for a perfect fluid”, Class. Quantum Grav., 18, 2123–2136, (1993). 2.5
Klainerman, S., and Machedon, M., “Finite energy solutions of the Yang-Mills equations in R3+1”, Ann. Math., 142, 39–119, (1995). 2.3
Klainerman, S., and Nicoló, F., “On local and global aspects of the Cauchy problem in general relativity”, Class. Quantum Grav., 16, R73–R157,(1999). 5.2
Kleihaus, B., and Kunz, J., “Static axially symmetric Einstein-Yang-Mills-dilaton solutions: I. Regular solutions”, Phys. Rev. D, 57, 834–856,(1998). 3.1
Lifshitz, E. M., and Khalatnikov, I. M., “Investigations in relativistic cosmology”, Adv. Phys., 12, 185–249, (1963). 3.2
Lin, S. S., “Stability of gaseous stars in spherically symmetric motions”,SIAM J. Math. Anal., 28, 539–569, (1997). 4.1
Lindblom, L., and Masood-ul Alam, A. K. M., “On the spherical symmetry of static stellar models”, Commun. Math. Phys., 162, 123–145, (1994). 3.1
Lions, P.-L., “Compactness in Boltzmann’s equation via Fourier integral operators and applications”, J. Math. Kyoto Univ., 34, 391–427, (1994). 4.2
Lions, P.-L., and Perthame, B., “Propagation of moments and regularity for the three-dimensional Vlasov-Poisson system”, Invent. Math., 105,415–430, (1991). 4.2
Majda, A., Compressible fluid flow and systems of conservation laws in several space dimensions., (Springer, Berlin, 1984). 1
Makino, T., “On spherically symmetric stellar models in general relativity”, J. Math. Kyoto Univ., 38, 55–69, (1998). 3.1, 4.1
Moncrief, V., “Global properties of Gowdy spacetimes with T3 × R topology”, Ann. Phys. (N. Y.), 132, 87–107, (1981). 3.5
Moncrief, V., “Neighbourhoods of Cauchy horizons in cosmological space-times with one Killing field”, Ann. Phys. (N. Y.), 141, 83–103, (1982). 6.2
Moncrief, V., and Eardley, D., “The global existence problem and cosmic censorship in general relativity”, Gen. Relativ. Gravit., 13, 887–892,(1981). 1
Mucha, P. B., “Global existence for the Einstein-Boltzmann equation in flat Robertson-Walker spacetime”, Commun. Math. Phys., 203, 107–118,(1999). 4.2
Newman, R. P. A. C., “On the structure of conformal singularities in classical general relativity”, Proc. R. Soc. London, 443, A473–A492; A493-515, (1993). 6.1
Park, J., “Static solutions of the Einstein equations for spherically symmetric elastic bodies”, (October, 1998), [Online Los Alamos Archive Preprint]: cited on 17 August 1999, http://xxx.lanl.gov/abs/gr-qc/9810010. 3.1
Pfaffelmoser, K., “Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data”, J. Differ. Equations, 95,281–303, (1992). 4.2
Racke, R., Lectures on nonlinear evolution problems, (Vieweg, Wiesbaden,1992). 1
Rein, G., “Stationary and static stellar dynamical models with axial symmetry.”, to appear in Journal of Nonlinear Analysis. 3.1
Rein, G., “Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics”, Commun. Math. Phys., 135, 41–78, (1990). 4.2
Rein, G., “Static solutions of the spherically symmetric Vlasov-Einstein system”, Math. Proc. Cambridge, 115, 559–570, (1994). 3.1
Rein, G., “Cosmological solutions of the Vlasov-Einstein system with spherical, plane and hyperbolic symmetry”, Math. Proc. Cambridge, 119,739–762, (1996). 3.5
Rein, G., “Nonlinear stability of homogeneous models in Newtonian cosmology”, Arch. Rat. Mech. Anal., 140, 335–351, (1997). 7.3
Rein, G., and Rendall, A. D., “Compact support of spherically symmetric equilibria in relativistic and non-relativistic galactic dynamics”, (December, 1998), [Online Los Alamos Archive Preprint]: cited on 17 August 1999, http://xxx.lanl.gov/abs/gr-qc/9812061. 3.1
Rein, G., and Rendall, A. D., “Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data”, Commun. Math. Phys., 150, 561–583, (1992). 3.3
Rein, G., and Rendall, A. D., “Smooth static solutions of the spherically symmetric Vlasov-Einstein system”, Ann. Inst. Henri Poincare, A., 59,383–397, (1993). 3.1
Rein, G., and Rendall, A. D., “Global existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting”,Arch. Rat. Mech. Anal., 126, 183–201, (1994). 4.2, 7.3
Rein, G., Rendall, A. D., and Schaeffer, J., “A regularity theorem for solutions of the spherically symmetric Vlasov-Einstein system”, Commun. Math. Phys., 168, 467–478, (1995). 3.3
Rein, G., Rendall, A. D., and Schaeffer, J., “Critical collapse of collisionless matter — a numerical investigation”, Phys. Rev. D, 58, 044007, (1998). 3.3
Rendall, A. D., “Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations”, Proc. R. Soc. London, Ser. A, 427, 221–239, (1990). 7.4
Rendall, A. D., “The initial value problem for a class of general relativistic fluid bodies”, J. Math. Phys., 33, 1047–1053, (1992). 2.5
Rendall, A. D., “On the definition of post-Newtonian approximations”, Proc. R. Soc. London, Ser. A, 438, 341–360, (1992). 7.2
Rendall, A. D., “The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system”, Commun. Math. Phys., 163, 89–112, (1994). 7.2
Rendall, A. D., “Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry”, Class. Quantum Grav., 12, 1517–1533, (1995). 3.5
Rendall, A. D., “Constant mean curvature foliations in cosmological space-times”, Helv. Phys. Acta, 69, 490–500, (1996). 2.1, 3.5
Rendall, A. D., “Existence and non-existence results for global constant mean curvature foliations”, Nonlinear Anal., 30, 3589–3598, (1997). 3.5
Rendall, A. D., “Existence of constant mean curvature hypersurfaces in spacetimes with two-dimensional local symmetry”, Commun. Math. Phys., 189, 145–164, (1997). 3.5
Rendall, A. D., “Global dynamics of the mixmaster model”, Class. Quantum Grav., 14, 2341–2356, (1997). 3.2
Rendall, A. D., “An introduction to the Einstein-Vlasov system”, Banach Center Publ., 41, 35–68, (1997). 3.3
Rendall, A. D., “Solutions of the Einstein equations with matter”, in Fran-caviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., Proceedings of the 14th International Conference on General Relativity and Gravitation, 313–335, (World Scientific, Singapore, 1997). 3.1
Rendall, A. D., and Schmidt, B. G., “Existence and properties of spherically symmetric static fluid bodies with given equation of state”, Class. Quantum Grav., 8, 985–1000, (1991). 3.1
Rendall, A. D., and Tod, K. P., “Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric”, Class. Quantum Grav., 16, 1705–1726, (1999). 3.2
Ringström, H., “Curvature blow up in Bianchi VIII and IX vacuum space-times”, (November, 1999), [Online Los Alamos Archive Preprint]: cited on 4 December 1999, http://xxx.lanl.gov/abs/gr-qc/9911115. 3.2
Schaeffer, J., “A class of counterexamples to Jeans’ theorem for the Vlasov-Einstein system”, Commun. Math. Phys., 204, 313–327, (1999). 3.1
Secchi, P., “On the equations of viscous gaseous stars”, Ann. Scuola Norm. Sup. Pisa, 18, 295–318, (1991). 2.5
Shapiro, S. L., and Teukolsky, S. A., “Relativistic stellar dynamics on the computer. II Physical applications”, Astrophys. J., 298, 58–79, (1985). 3.1
Sideris, T., “Formation of singularities in three-dimensional compressible fluids”, Commun. Math. Phys., 101, 475–485, (1979). 4.1
Smoller, J., and Temple, B., “Global solutions of the relativistic Euler equations”, Commun. Math. Phys., 156, 65–100, (1993). 4.1
Smoller, J. A., Wasserman, A. G., Yau, S. T., and Mcleod, J. B., “Smooth static solutions of the Einstein-Yang-Mills equations”, Commun. Math. Phys., 143, 115–147, (1991). 3.1
Strauss, W., Nonlinear wave equations, (American Mathematical Society, Providence, 1989). 1
Taylor, M. E., Pseudodifferential operators and nonlinear PDE, (Birkhäuser, Boston, 1991). 2.3
Taylor, M. E., Partial differential equations, (Springer, Berlin, 1996). 1
Tod, K. P., “Isotropic singularities”, Rend. Sem. Mat. Univ. Politec. Torino, 50, 69–93, (1992). 6.1
Wainwright, J., and Ellis, G. F. R., Dynamical Systems in Cosmology, (Cambridge University Press, Cambridge, 1997). 3.2
Wainwright, J. A., Hancock, M. J., and Uggla, C., “Asymptotic self-similarity breaking at late times in cosmology”, Class. Quantum Grav.,16, 2577–2598, (1999). 3.2
Weaver, M., “Dynamics of magnetic Bianchi VI0 cosmologies.”, (September, 1999), [Online Los Alamos Archive Preprint]: cited on 21 September 1999, http://xxx.lanl.gov/abs/gr-qc/9909043. 3.2
Witt, D., “Vacuum spacetimes that admit no maximal slice”, Phys. Rev. Lett., 57, 1386–1389, (1986). 2.1
Woodhouse, N. M. J., “Integrability and Einstein’s equations”, Banach Center Publ., 41, 221–232, (1997). 3.4
Wu, S., “Well-posedness in Sobolev spaces of the full water wave problem in 3-D”, J. Amer. Math. Soc., 12, 445–495, (1999). 2.5
York, J. W., “Conformal ‘thin-sandwich’ data for the initial value problem of general relativity”, Phys. Rev. Lett., 82, 1350–1353, (1999). 2.1