Local Tb Theorems and Hardy Inequalities

The Journal of Geometric Analysis - Tập 23 Số 1 - Trang 303-374 - 2013
Pascal Auscher1,2, Eddy Routin1,2
1Centre for Mathematics and its Applications, Australian National University, Canberra, Australia
2Laboratoire de Mathématiques, Université Paris-Sud, Orsay, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alfonseca, M., Auscher, P., Axelsson, A., Hofmann, S., Kim, S.: Analyticity of layer potentials and L 2 solvability of boundary value problems for divergence form elliptic equations with complex L ∞ coefficients. Preprint, arXiv:0705.0836v1 (2007)

Auscher, P., Hofmann, S., Muscalu, C., Tao, T., Thiele, C.: Carleson measures, trees, extrapolation and Tb theorems. Publ. Mat. 46, 257–325 (2002)

Auscher, P., Tchamitchian, P.: Bases d’ondelettes sur les courbes corde-arc, noyau de Cauchy et espaces de Hardy associés. Rev. Mat. Iberoam. 5(3–4), 139–170 (1989)

Auscher, P., Yang, Q.X.: BCR algorithm and the T(b) theorem. Publ. Mat. 53, 179–196 (2009)

Buckley, S.M.: Inequalities of John-Nirenberg type in doubling spaces. J. Anal. Math. 79, 215–240 (1999)

Buckley, S.M.: Is the maximal function of a Lipschitz function continuous? Ann. Acad. Sci. Fenn., Ser. A 1 Math. 24, 519–528 (1999)

Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms. I. Commun. Pure Appl. Math. 44, 141–183 (1991)

Christ, M.: A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61, 601–628 (1990)

Colding, T.H., Minicozzi, W.P. II: Liouville theorems for harmonic sections and applications. Commun. Pure Appl. Math. 51, 113–138 (1998)

David, G., Journé, J., Semmes, S.: Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoam. 1, 1–56 (1985)

Figiel, T.: Singular integral operators: a martingale approach. Lond. Math. Soc. Lect. Note Ser. 158, 95–110 (1990)

Hofmann, S.: A proof of the local Tb theorem for standard Calderón-Zygmund operators. Unpublished, arXiv:0705.0840v1 (2007)

Hofmann, S.: Local T(b) theorems and applications in PDE. In: Cifuentes, P., et al. (eds.) Harmonic Analysis and Partial Differential Equations. 8th International Conference, El Escorial, Madrid, Spain, June 16–20, 2008. Contemporary Mathematics, vol. 505, pp. 29–52. American Mathematical Society, Providence (2010)

Hytönen, T.: An operator-valued Tb theorem. J. Funct. Anal. 234(2), 420–463 (2006)

Hytönen, T.: The vector-valued non-homogeneous Tb theorem. Preprint, arXiv:0809.3097v3 (2008)

Hofmann, S., Martell, J.-M.: Work in progress

Han, Y.-S., Sawyer, E.T.: Para-accretive functions, the weak boundedness property and the Tb theorem. Rev. Mat. Iberoam. 6(1–2), 17–41 (1990)

Lin, H., Nakai, E., Yang, D.: Boundedness of lusin-area and $g^{\ast}_{\lambda}$ functions on localized bmo spaces over doubling metric measure spaces. Bull. Sci. Math. 135(1), 59–88 (2011)

McIntosh, A., Meyer, Y.: Algèbres d’opérateurs définis par des intégrales singulières. C. R. Math. Acad. Sci. Paris 301(8), 395–397 (1985)

Nazarov, F., Treil, S., Volberg, A.: Accretive system Tb-theorems on nonhomogeneous spaces. Duke Math. J. 113(2), 259–312 (2002)

Nazarov, F., Treil, S., Volberg, A.: The Tb-theorem on non-homogeneous spaces. Acta Math. 190(2), 151–239 (2003)

Tessera, R.: Volume of spheres in doubling metric measured spaces and in groups of polynomial growth. Bull. Soc. Math. Fr. 135, 47–64 (2007)

Tan, C., Yan, L.: Local Tb theorem on spaces of homogeneous type. Z. Anal. Anwend. 28(3), 333–347 (2009)