Local Property of a Class of m-Subharmonic Functions

Vũ Văn Hùng1
1Department of Mathematics, Physics and Informatics, Tay Bac University, Son La, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)

Bedford, E., Taylor, B.A.: Fine topology, S̆ilov boundary, and (d d c ) n . J. Funct. Anal. 72, 225–251 (1987)

Benelkourchi, S.: Weighted pluricomplex energy. Potential Anal. 31, 1–20 (2009)

Benelkourchi, S., Guedj, V., Zeriahi, A.: Plurisubharmonic functions with weak singularities. In: Passare, M. (ed.) Complex Analysis and Digital Geometry: Proceedings from the Kiselmanfest, pp 57–73. Uppsala Universitet (2007)

Błocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier 55, 1735–1756 (2005)

Błocki, Z.: The Complex Monge–Ampere Operator in Pluripotential Theory. Lectures Notes (unpublished) (1998). http://gamma.im.uj.edu.pl/~blocki/publ/ln/wykl.pdf

Błocki, Z.: On the definition of the Monge–Ampère operator in ℂ 2 $\mathbb {C}^{2}$ . Math. Ann. 328, 415–423 (2004)

Błocki, Z.: The domain of definition of the complex Monge–Ampère operator. Am. J. Math. 128, 519–530 (2006)

Cegrell, U.: Pluricomplex energy. Acta Math. 180, 187–217 (1998)

Cegrell, U.: The general definition of the complex Monge–Ampère operator. Ann. Inst. Fourier 54, 159–179 (2004)

Cegrell, U., Kolodziej, S., Zeriahi, A.: Subextension of plurisubharmonic functions with weak singularities. Math. Z. 250, 7–22 (2005)

Chinh, L.H.: On Cegrell’s classes of m-subharmonic functions. arXiv: 1301.6502v1 (2013)

Dinew, S., Kołodziej, S.: A priori estimates for the complex Hessian equations. Anal. PDE 7, 227–244 (2014)

Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)

Hai, L.M., Hiep, P.H., Quy, H.N.: Local property of the class E χ , loc $\mathcal {E}_{\chi ,loc}$ . J. Math. Anal. Appl. 402, 440–445 (2013)

Hörmander, L.: Notions of convexity. Progress in Mathematics, vol. 127. Birkhäuser, Boston (1994)

Klimek, M.: Pluripotential Theory. The Clarendon Press/Oxford University Press, New York (1991)

Kołodziej, S.: The range of the complex Monge–Ampère operator II. Indiana Univ. Math. J. 44, 765–782 (1995)

Kołodziej, S.: The complex Monge–Ampère equation. Acta Math. 180, 69–117 (1998)

Kołodziej, S.: The Complex Monge–Ampère Equation and Pluripotential Theory. Memoirs of the American Mathematical Society, vol. 178. American Mathematical Society, RI (2005)

Sadullaev, A.S., Abullaev, B.I.: Potential theory in the class of m-subharmonic functions. Trudy. Math. Inst. imeni V. A. Steklova 279, 166–192 (2012)