Local Null Controllability of a 1D Stefan Problem

E. Fernández-Cara1, F. Hernández2, J. Límaco2
1Dpto. E.D.A.N., Universidad de Sevilla, Seville, Spain
2Inst. Matemática, Universidade Federal Fluminense, Niterói, Brazil

Tóm tắt

The purpose of this article is to give a new proof of a null controllability result for a 1D free-boundary problem of the Stefan kind for a heat PDE. We introduce a method based on local inversion that, in contrast with other previous arguments, does not rely on any compactness property and can be generalized to higher dimensions.

Tài liệu tham khảo

Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Consultants Bureau, New York (1987) Avalos, G., Lasiecka, I.: Boundary controllability of thermoelastic plates via the free boundary conditions. SIAM J. Control Optim. 38(2), 337–383 (2000). (electronic) Clark, H.R., Fernández-Cara, E., Limaco, J., Medeiros, L.A.: Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities. Appl. Math. Comput. 223, 483–505 (2013) Doubova, A., Fernández-Cara, E.: Some control results for sim-plified one-dimensional models of fluid–solid interaction. Math. Models Methods Appl. Sci. 15(5), 783–824 (2005) Doubova, A., Fernández-Cara, E., González-Burgos, M., Zuazua, E.: On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41(3), 798–819 (2002) Fabre, C., Puel, J.P., Zuazua, E.: Approximate controllability of the semilinear heat equation. Proc. R. Soc. Edinb. Sect. A 125(1), 31–61 (1995) Fattorini, H.O., Russell, D.L.: Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal. 43(4), 272–292 (1971) Fernández-Cara, E., Límaco, J., Menezes, S.B.: On the controllability of a free-boundary problem for the 1D heat equation. Syst. Control Lett. 87, 29–35 (2016) Fernández-Cara, E., Zuazua, E.: The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5(4–6), 465–514 (2000) Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964) Friedman, A.: Variational Principles and Free-boundary Problems. Wiley, New York (1982) Friedman, A. (ed.): Tutorials in Mathematical Biosciences, III. Cell Cycle, Proliferation, and Cancer. Lecture Notes in Mathematics, vol. 1872, Mathematical Biosciences Subseries. Springer, Berlin (2006) Friedman, A.: PDE problems arising in mathematical biology. Netw. Heterog. Media 7(4), 691–703 (2012) Fursikov, A.V., Imanuvilov, O.Yu.: Controllability of Evolution Equations. Lectures Notes Series, vol. 34. National University, RIM, Seoul (1996) Hansen, S.W., Imanuvilov, O.Yu.: Exact controllability of a multilayer Rao–Nakra plate with free boundary conditions. Math. Control Relat. Fields 1(2), 189–230 (2011) Hermans, A.J.: Water Waves and Ship Hydrodynamics. An Introduction, 2nd edn. Springer, Dordrecht (2011) Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs. American Mathematical Society, Providence (1968) Lebeau, G., Robbiano, L.: Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20(1–2), 335–356 (1995) Liu, Y., Takahashi, T., Tucsnak, M.: Single input controllability of a simplified fluid–structure interaction model. ESAIM Control Optim. Calc. Var. 19(1), 20–42 (2013) Mercan, M., Nakoulima, O.: Control of Stackelberg for a two-stroke problem. Dyn. Contin. Discret. Impuls. Syst. Ser. B Appl. Algorithms 22(6), 441–463 (2015) Nakoulima, O.: Contrôlabilité à zéro avec contraintes sur le contrôle. C. R. Math. Acad. Sci. Paris 339(6), 405–410 (2004) Puel, J.-P., Yamamoto, M.: On a global estimate in a linear inverse hyperbolic problem. Inverse Probl. 12(6), 995–1002 (1996) Stoker, J.J.: Water Waves. Interscience, New York (1957) Vázquez, J.L., Zuazua, E.: Large time behavior for a simplified 1D model of fluid–solid interaction. Commun. Partial Differ. Equ. 28(9–10), 1705–1738 (2003) Wrobel, L.C., Brebbia, C.A. (eds.): Computational Modelling of Free and Moving Boundary Problems, vol. 1, Fluid flow. In: Proceedings of the First International Conference, 2–4 July, 1991. Computational Mechanics Publications, Southampton (1991)