Local Langlands correspondence for even orthogonal groups via theta lifts

Selecta Mathematica - Tập 27 - Trang 1-71 - 2021
Rui Chen1, Jialiang Zou1
1National University of Singapore, Singapore, Republic of Singapore

Tóm tắt

Using theta correspondence, we obtain a classification of irreducible representations of an arbitrary even orthogonal group (i.e. the local Langlands correspondence) by deducing it from the local Langlands correspondence for symplectic groups due to Arthur. Moreover, we show that our classifications coincide with the local Langlands correspondence established by Arthur and formulated precisely by Atobe–Gan for quasi-split even orthogonal groups.

Tài liệu tham khảo

Atobe, H., Gan, W.T.: Local theta correspondence of tempered representations and Langlands parameters. Invent. Math. 210(2), 341–415 (2017) Atobe, H., Teck Gan, W.: On the local Langlands correspondence and Arthur conjecture for even orthogonal groups. Represent. Theory 21, 354–415 (2017) Arthur, J.: The endoscopic classification of representations, volume 61 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI. Orthogonal and symplectic groups (2013) Atobe, H.: On the uniqueness of generic representations in an \(L\)-packet. Int. Math. Res. Not. 23, 7051–7068 (2017) Atobe, H.: The local theta correspondence and the local Gan-Gross-Prasad conjecture for the symplectic-metaplectic case. Math. Ann. 371(1–2), 225–295 (2018) Chan, P.-S., Teck Gan, W.: The local Langlands conjecture for \(\rm GSp(4)\) III: Stability and twisted endoscopy. J. Number Theory 146, 69–133 (2015) Choiy, K., Goldberg, D.: Invariance of \(R\)-groups between \(p\)-adic inner forms of quasi-split classical groups. Trans. Am. Math. Soc. 368(2), 1387–1410 (2016) Chen, R., Zou, J.: Local Langlands correspondence for unitary groups via theta lifts. arXiv preprint arXiv:2008.01771 (2020) Gan, W.T., Gross, B.H., Prasad, D.: Symplectic local root numbers, central critical \(L\) values, and restriction problems in the representation theory of classical groups.346, 1–109 (2012). Sur les conjectures de Gross et Prasad. I Gan, W.T., Ichino, A.: Formal degrees and local theta correspondence. Invent. Math. 195(3), 509–672 (2014) Gan, W.T., Ichino, A.: The Gross-Prasad conjecture and local theta correspondence. Invent. Math. 206(3), 705–799 (2016) Goldberg, D.: Reducibility of induced representations for \({\rm Sp}(2n)\) and \({\rm SO}(n)\). Am. J. Math. 116(5), 1101–1151 (1994) Ginzburg, D., Rallis, S., Soudry, D.: Periods, poles of \(L\)-functions and symplectic-orthogonal theta lifts. J. Reine Angew. Math. 487, 85–114 (1997) Gan, W.T., Savin, G.: Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence. Compos. Math. 148(6), 1655–1694 (2012) Gan, W.T., Sun, B.: The Howe duality conjecture: quaternionic case. In: Representation theory, number theory, and invariant theory, volume 323 of Progr. Math, pp. 175–192. Birkhäuser/Springer, Cham (2017) Gan, W.T., Takeda, S.: The local Langlands conjecture for GSp(4). Ann. Math. (2), 173(3), 1841–1882 (2011) Gan, W.T., Takeda, S.: A proof of the Howe duality conjecture. J. Am. Math. Soc. 29(2), 473–493 (2016) Kaletha, T.: Genericity and contragredience in the local Langlands correspondence. Algebra Number Theory 7(10), 2447–2474 (2013) Konno, T.: A note on the Langlands classification and irreducibility of induced representations of \(p\)-adic groups. Kyushu J. Math. 57(2), 383–409 (2003) Kudla, S.S.: On the local theta-correspondence. Invent. Math. 83(2), 229–255 (1986) Kudla, S.S.: Splitting metaplectic covers of dual reductive pairs. Isr. J. Math. 87(1–3), 361–401 (1994) Kudla, S.: Notes on the local theta correspondence. unpublished notes. available online (1996) Lapid, E.M., Rallis, S.: On the local factors of representations of classical groups. In: Automorphic representations, \(L\)-functions and applications: progress and prospects, volume 11 of Ohio State Univ. Math. Res. Inst. Publ., pp. 309–359. de Gruyter, Berlin (2005) Luo, C.: Endoscopic character identities for metaplectic groups. J. Reine Angew. Math. 1(ahead-of-print) (2020) Mœglin, C.: Multiplicité 1 dans les paquets d’Arthur aux places \(p\)-adiques. In: On certain \(L\)-functions, volume 13 of Clay Math. Proc., pp. 333–374. Amer. Math. Soc., Providence, RI, 2011 Mœglin, C., Renard, D.: Sur les paquets d’Arthur des groupes classiques et unitaires non quasi-déployés. In Relative aspects in representation theory, Langlands functoriality and automorphic forms. Lecture Notes in Math, vol. 2221, pp. 341–361. Springer, Cham (2018) Muić, G., Savin, G.: Symplectic-orthogonal theta lifts of generic discrete series. Duke Math. J. 101(2), 317–333 (2000) Mœglin, C., Vignéras, M.-F., Waldspurger, J.-L.: Correspondances de Howe sur un corps \(p\)-adique. Lecture Notes in Mathematics, vol. 1291. Springer, Berlin (1987) Silberger, A.J.: The Langlands quotient theorem for \(p\)-adic groups. Math. Ann. 236(2), 95–104 (1978) Sun, B., Zhu, C.-B.: Conservation relations for local theta correspondence. J. Am. Math. Soc. 28(4), 939–983 (2015) Tate, J.: Number theoretic background. In Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pp. 3–26. Am. Math. Soc., Providence, R.I., 1979 Vogan Jr., D.A.: The local Langlands conjecture. In: Representation theory of groups and algebras, volume 145 of Contemp. Math., pp. 305–379. Amer. Math. Soc., Providence, RI (1993) Waldspurger, J.-L.: Démonstration d’une conjecture de dualité de Howe dans le cas \(p\)-adique, \(p\ne 2\). In Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), volume 2 of Israel Math. Conf. Proc., pp. 267–324. Weizmann, Jerusalem (1990)