Local Intersection Cohomology of Baily–Borel Compactifications

Wiley - Tập 134 - Trang 243-268 - 2002
M. Goresky1, G. Harder2, R. MacPherson1, A. Nair3
1Institute for Advanced Study, School of Mathematics, Princeton, U.S.A
2Mathematisches Institut der Universität Bonn, Bonn, Germany
3Tata Institute of Fundamental Research, School of Mathematics, Bombay, India

Tóm tắt

The local intersection cohomology of a point in the Baily–Borel compactification (of a Hermitian locally symmetric space) is shown to be canonically isomorphic to the weighted cohomology of a certain linear locally symmetric space (an arithmetic quotient of the associated self-adjoint homogeneous cone). Explicit computations are given for the symplectic group in four variables.

Tài liệu tham khảo

Ash, A., Mumford, D., Rapoport, M., and Tai, Y.: Smooth Compactifications of Locally Symmetric Varieties, Math. Sci. Press, Brookline, MA., 1975. Baily, W. and Borel, A.: Compactifications of arithmetic quotients of bounded symmetric domains, Ann. Math. 84 (1966), 442–528. Borel, A.: Introduction aux groupes arithme´tiques, Hermann, Paris, 1968. Borel, A.: A vanishing theorem in relative Lie algebra cohomology, In: Algebraic Groups (Utrecht 1986), Lecture Notes in Math. 1271, Springer-Verlag, New York 1987. Borel, A. and Casselman, W.: Cohomologie d'intersection et L2 cohomologie des varie´te´s arithme´tiques de rang rationnel deux, C.R. Acad. Sci. Paris 301 (1985), 369–373. Borel, A. and Serre, J. P.: Corners and arithmetic groups, Comm. Math. Helv. 48 (1973), 436–491. van Est, W. T.: A generalization of the Cartan-Leray spectral sequence I, II, Indag. Math. 20 (1958), 399–413. Franke, J.: Harmonic analysis in weighted L2 spaces, Ann. Sci. E´ cole Norm. Sup. 31 (1998), 181–279. Goresky, M., Kottwitz, R., and MacPherson, R.: Discrete series characters and the Lefschetz formula for Hecke operators, Duke Math J. 89 (1997), 477–554. Goresky, M. and MacPherson, R.: Local contribution to the Lefschetz fixed point formula, Invent. Math 111 (1993), 1–33. Goresky, M. and MacPherson, R.: The topological trace formula, Preprint, IAS, 2001. Goresky, M., Harder, G., and MacPherson, R.: Weighted cohomology, Invent. Math 116 (1994), 139–213. Harder, G.: A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Sci. E´cole Norm. Sup. 4 (1971), 409–455. Hoffman, J. W. and Weintraub, S.: Cohomology of the Siegel Modular Group of Degree Two and Level Four, Mem. Amer. Math. Soc. 631(1998), Amer. Math. Soc., Providence, RI., 1998. Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math. 74 (1961), 329–387. Laumon, G.: Sur la cohomologie a` supports compacts des varie´ te´ s de Shimura pour GSPð4ÞQ, Compositio Math. 105 (1997), 267–359. Looijenga, E.: L</del>2-cohomology of locally symmetric varieties. Compositio Math. 67 (1988), 3–20. Looijenga, E. and Rapoport, M.: Weights in the local cohomology of a Baily-Borel compactification, In: Complex Geometry and Lie Theory, Proc. Sympos. Pure Math. 53, Amer. Math. Soc., Providence R. I., 1991, pp. 223–260. MacPherson, R. and McConnell, M.: Classical projective geometry and modular varieties, In: J. J. Igusa (nted.), Algebraic Analysis, Geometry, and Number Theory. Proc. JAMI Inaugural Conference, Johns Hopkins Univ. Press, Baltimore MD}, 198 Miyaki, T.: Modular Forms, Springer-Verlag, New York, 1989. Nair, A.: Weighted cohomology of arithmetic groups, Ann. Math. 150 (1999), 1–31. Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. Math. 59 (1954), 531–538. Pink, R.: Arithmetical compactification of mixed Shimura varieties, Dissertation, Univ. of Bonn, Bonn (1989). Pink, R.: On '-adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification, Math. Ann. 292 (1992), 197–240. Saper, L.: L-modules and the conjecture of Rapoport and Goresky-MacPherson, Preprint, Duke Univ. 2001. Saper, L. and Stern, M.: L2 cohomology of arithmetic varieties, Ann. Math. 132 (1990), 1–69. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Forms, Math. Soc. Japan and Princeton Univ. Press, Princeton NJ, 1971. Springer, T. A.: Linear Algebraic Groups, Birkha¨user, Boston, 1981. Stern, M.: Lefschetz formula for arithmetic varieties, Invent. Math. 115 (1994), 241–296. Taylor, R.: On the '-adic cohomology of Siegel threefolds, Invent. Math. 114 (1993), 289–310. Vogan, D.: Representations of Real Reductive Lie Groups, Birkha¨user, Boston, 1981. Wallach, N.: On the constant term of a square-integrable automorphic form, In: Operator Algebras and Group Representations II, Monogr. Stud. Math. 18, Pitman, Boston MA, 1984, pp. 227–237. Zucker, S.: L 2 cohomology of warped products and arithmetic groups, Invent. Math. 70 (1982), 169–218. Zucker, S.: L 2-cohomology and intersection homology of locally symmetric varieties II, Compositio Math. 59 (1986), 339–398. Zucker, S.: Satake compactifications, Comm. Math. Helv. 58 (1983), 312–343.