Local Intersection Cohomology of Baily–Borel Compactifications
Tóm tắt
The local intersection cohomology of a point in the Baily–Borel compactification (of a Hermitian locally symmetric space) is shown to be canonically isomorphic to the weighted cohomology of a certain linear locally symmetric space (an arithmetic quotient of the associated self-adjoint homogeneous cone). Explicit computations are given for the symplectic group in four variables.
Tài liệu tham khảo
Ash, A., Mumford, D., Rapoport, M., and Tai, Y.: Smooth Compactifications of Locally Symmetric Varieties, Math. Sci. Press, Brookline, MA., 1975.
Baily, W. and Borel, A.: Compactifications of arithmetic quotients of bounded symmetric domains, Ann. Math. 84 (1966), 442–528.
Borel, A.: Introduction aux groupes arithme´tiques, Hermann, Paris, 1968.
Borel, A.: A vanishing theorem in relative Lie algebra cohomology, In: Algebraic Groups (Utrecht 1986), Lecture Notes in Math. 1271, Springer-Verlag, New York 1987.
Borel, A. and Casselman, W.: Cohomologie d'intersection et L2 cohomologie des varie´te´s arithme´tiques de rang rationnel deux, C.R. Acad. Sci. Paris 301 (1985), 369–373.
Borel, A. and Serre, J. P.: Corners and arithmetic groups, Comm. Math. Helv. 48 (1973), 436–491.
van Est, W. T.: A generalization of the Cartan-Leray spectral sequence I, II, Indag. Math. 20 (1958), 399–413.
Franke, J.: Harmonic analysis in weighted L2 spaces, Ann. Sci. E´ cole Norm. Sup. 31 (1998), 181–279.
Goresky, M., Kottwitz, R., and MacPherson, R.: Discrete series characters and the Lefschetz formula for Hecke operators, Duke Math J. 89 (1997), 477–554.
Goresky, M. and MacPherson, R.: Local contribution to the Lefschetz fixed point formula, Invent. Math 111 (1993), 1–33.
Goresky, M. and MacPherson, R.: The topological trace formula, Preprint, IAS, 2001.
Goresky, M., Harder, G., and MacPherson, R.: Weighted cohomology, Invent. Math 116 (1994), 139–213.
Harder, G.: A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Sci. E´cole Norm. Sup. 4 (1971), 409–455.
Hoffman, J. W. and Weintraub, S.: Cohomology of the Siegel Modular Group of Degree Two and Level Four, Mem. Amer. Math. Soc. 631(1998), Amer. Math. Soc., Providence, RI., 1998.
Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math. 74 (1961), 329–387.
Laumon, G.: Sur la cohomologie a` supports compacts des varie´ te´ s de Shimura pour GSPð4ÞQ, Compositio Math. 105 (1997), 267–359.
Looijenga, E.: L</del>2-cohomology of locally symmetric varieties. Compositio Math. 67 (1988), 3–20.
Looijenga, E. and Rapoport, M.: Weights in the local cohomology of a Baily-Borel compactification, In: Complex Geometry and Lie Theory, Proc. Sympos. Pure Math. 53, Amer. Math. Soc., Providence R. I., 1991, pp. 223–260.
MacPherson, R. and McConnell, M.: Classical projective geometry and modular varieties, In: J. J. Igusa (nted.), Algebraic Analysis, Geometry, and Number Theory. Proc. JAMI Inaugural Conference, Johns Hopkins Univ. Press, Baltimore MD}, 198
Miyaki, T.: Modular Forms, Springer-Verlag, New York, 1989.
Nair, A.: Weighted cohomology of arithmetic groups, Ann. Math. 150 (1999), 1–31.
Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. Math. 59 (1954), 531–538.
Pink, R.: Arithmetical compactification of mixed Shimura varieties, Dissertation, Univ. of Bonn, Bonn (1989).
Pink, R.: On '-adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification, Math. Ann. 292 (1992), 197–240.
Saper, L.: L-modules and the conjecture of Rapoport and Goresky-MacPherson, Preprint, Duke Univ. 2001.
Saper, L. and Stern, M.: L2 cohomology of arithmetic varieties, Ann. Math. 132 (1990), 1–69.
Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Forms, Math. Soc. Japan and Princeton Univ. Press, Princeton NJ, 1971.
Springer, T. A.: Linear Algebraic Groups, Birkha¨user, Boston, 1981.
Stern, M.: Lefschetz formula for arithmetic varieties, Invent. Math. 115 (1994), 241–296.
Taylor, R.: On the '-adic cohomology of Siegel threefolds, Invent. Math. 114 (1993), 289–310.
Vogan, D.: Representations of Real Reductive Lie Groups, Birkha¨user, Boston, 1981.
Wallach, N.: On the constant term of a square-integrable automorphic form, In: Operator Algebras and Group Representations II, Monogr. Stud. Math. 18, Pitman, Boston MA, 1984, pp. 227–237.
Zucker, S.: L 2 cohomology of warped products and arithmetic groups, Invent. Math. 70 (1982), 169–218.
Zucker, S.: L 2-cohomology and intersection homology of locally symmetric varieties II, Compositio Math. 59 (1986), 339–398.
Zucker, S.: Satake compactifications, Comm. Math. Helv. 58 (1983), 312–343.