Trao đổi nhiệt cục bộ trong buồng đốt của động cơ hydro chạy bằng hỗn hợp nhiên liệu loãng

R. Z. Kavtaradze1, A. M. Kondratev1, Ch. Rongrong1, Ch. Citian1, S. Baigang2, G. Zh. Sakhvadze3
1Bauman Moscow State Technical University (BMSTU), Moscow, Russia
2Beijing Institute of Technology, Haidian District, Beijing, China
3Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), Moscow, Russia

Tóm tắt

Kết quả nghiên cứu quá trình làm việc, trao đổi nhiệt cục bộ trong buồng đốt, và trạng thái nhiệt của pít-tông của động cơ hydro với việc hình thành hỗn hợp bên ngoài được phân tích. Các nghiên cứu về hệ số trao đổi nhiệt cục bộ đã được thực hiện bằng cách sử dụng mô hình toán học 3D-CRFD đã được phát triển và xác minh dựa trên kết quả thực nghiệm, lần đầu tiên được sử dụng để nghiên cứu một động cơ hydro loại này. Đã xác định rằng việc vận hành động cơ hydro với các hỗn hợp cháy có thành phần tỉ lệ (hoặc gần với nó) không thực tế, vì nó không chỉ dẫn đến các quá trình cháy bất thường và tăng cường phát thải khí ô nhiễm nitơ, mà còn làm gia tăng tải nhiệt cục bộ lên các bộ phận, đặc biệt là lên pít-tông, nhiệt độ cục bộ của nó có thể vượt quá các giá trị chấp nhận được. Nó đã chỉ ra rằng việc sử dụng các hỗn hợp loãng có thể ngăn ngừa các hiện tượng không mong muốn, đặc biệt là giảm phát thải khí nitơ oxit, giảm tải nhiệt, và cải thiện trạng thái chịu nhiệt của pít-tông, tạo điều kiện chấp nhận được cho việc vận hành động cơ hydro.

Từ khóa

#động cơ hydro #hỗn hợp loãng #trao đổi nhiệt #buồng đốt #tải nhiệt cục bộ #phát thải khí ô nhiễm

Tài liệu tham khảo

da Rosa, A.V., Fundamentals of Renewable Energy Processes, London: Elsevier Press, 2005.

Kavtaradze, R., Natriashvili, T., and Gladyshev, S., Hydrogen-diesel engine: Problems and prospects of improving the working process, SAE Tech. Pap., 2019, no. 01-0541, p. 15.

Lieuwen, T., Yang, V., and Yetter, R., Synthesis Gas Combustion. Fundamentals and Applications, New York: CRC Press, 2010.

Härtl, M., Seidenspinner, Ph., Wachtmeister, G., and Jacob, E., Synthetischer Dieselkraftstoff OME1-Lösungsansatz für den Zielkonflikt NOX-Partikel-Emission, MTZ, 2014, nos. 7–8, p. 68.

Levin, Y.V., Prikhodkov, K.V., and Fedyanov, E.A., Influence of hydrogen additives on cycle-to-cycle variability of working process of rotary engine, Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019), Springer, 2020, vol. 2, p. 625.

Klell, M., Eichlseder, H., and Trattner, A., Wasserstoff in der Fahrzeugtechnik. Erzeugung, Speicherung, Anwendung, Wiesbaden: Vieweg Teubner Verlag, 2018.

Eichlseder, H., Spuller, Ch., Heidl, R., Gerbig, F., and Heller, K., Konzepte für die Dieselähnliche Wasserstoffverbrennung, MTZ, 2010, no. 1, p. 60.

Mishchenko, A.I., Primenenie vodoroda dlya avtomobil’nykh dvigatelei (The Use of Hydrogen for Automobile Engines), Kiev: Naukova Dumka, 1984.

Kozlov, A., Terenchenko, A., Zuev, N., and Zelentsov, A., CFD simulation of knock onset in a heavy-duty spark ignition gas engine, Int. J. Recent Technol. Eng. (IJRTE), 2019, vol. 8, no. 4, p. 7.

Kavtaradze, R.Z., Zelentsov, A.A., and Krasnov, V.M., Local heat exchange in the combustion chamber of a diesel engine converted to natural gas and hydrogen, Teplofiz. Vys. Temp., 2018, vol. 56, no. 6, p. 924.

Prikhod'ko, K.V., Bastrakov, A.M., and Ryazanova, T.N., Investigation of the effect of the excess air ratio on the combustion characteristics of hydrogen-air mixtures in a constant volume combustion chamber, Izv. Volgogr. Gos. Tekh. Univ., 2013, no. 12, p. 37.

Sun Bai-gang, Duan Jun-fa, and Liu Fu-shui, NOx emission characteristics of hydrogen internal combustion engine, J. Beijing Inst. Tekhnol., 2014, vol. 23, no. 3, p. 339.

Duan Jun-fa, Liu Fu-shui, and Sun Bai-gang, Backfire control and power enhancement a hydrogen internal combustion engine, Int. J. Hydrogen Energy, 2014, vol. 39, p. 4581.

Kavtaradze, R.Z., Zelentsov, A.A., Sun Bai-gang, Wan Yichun, Rongrong Cheng, and Tsityan Zhang, Experimental study of the working process of a piston engine with hydrogen injection into the intake system, Transp. Altern. Topl., 2020, no. 4, p. 35.

Sun Bai-gang, Zhang Dong-sheng, and Liu Fu-shui, Cycle variations in a hydrogen internal combustion engine, Int. J. Hydrogen Energy, 2013, vol. 38, p. 3778.

AVL FIRE. Users Manual. AVL List GmbH, Graz (Austria).Version 2019.

Saric, S., Basara, B., Suga, K., and Gomboc, S., Analytical Wall-Function Strategy for the Modelling of Turbulent Heat Transfer in the Automotive CFD Applications, SAE Technical Paper, 2019, p. 8.

Merker, G., Schwarz, Ch., and Teichmann, R., Grundlagen Verbrennungsmotoren. Funktionsweise, Simulation, Messtechnik, Wiesbaden: Springer Fachmedien, 2014, 6th ed.

Kavtaradze, R., Zelentsov, A., Gladyshev, S., Kavtaradze, Z., and Onishchenko, D., Heat insulating effect of soot deposit on local transient heat transfer in diesel engine combustion chamber, SAE Int. Pap., 2012, no. 2012-01-1217, p. 12.

Weidenleren, A., Kubach, H., Pfeil, J., and Koch, T., Einfluss von Brennraumablagerungen auf die Wandwärmeverluste, MTZ, 2019, no. 3, p. 76.

Onishchenko, D.O., Pankratov, S.A., Zotov, A.A., Osipkov, A.S., and Poshekhonov, R.A., Study of influence of hydraulic thermoelectric generator resistance on gasoline engine efficiency, Int. J. Appl. Eng. Res., 2017, vol. 12, no. 5, p. 721.