Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System

Jiawei Sun1, Shusen Xie2, Yulong Xing1
1Department of Mathematics, The Ohio State University, Columbus, USA
2School of Mathematical Sciences, Ocean University of China, Qingdao, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amick, C.J.: Regularity and uniqueness of solutions to the Boussinesq system of equations. J. Differ. Equ. 54, 231–247 (1984)

Antonopoulos, D.C., Dougalis, V.A., Mitsotakis, D.E.: Galerkin approximations of periodic solutions of Boussinesq systems. Bull. Greek Math. Soc. 57, 13–30 (2010)

Bona, J.L., Chen, M.: A Boussinesq system for two-way propagation of nonlinear dispersive waves. Physica D 116, 191–224 (1998)

Bona, J.L., Chen, M.: Singular solutions of a Boussinesq system for water waves. J. Math. Study 49, 205–220 (2016)

Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous-Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 82, 1401–1432 (2013)

Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: I. Derivation and linear theory. J. Nonlinear Sci. 12, 283–318 (2002)

Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory. Nonlinearity 17, 925–952 (2004)

Bona, J.L., Dougalis, V.A., Mitsotakis, D.E.: Numerical solutions of KdV-KdV systems of Boussinesq equations I. The numerical scheme and generalized solitary waves. Math. Comput. Simul. 74, 214–228 (2007)

Boussinesq, J.: Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. Comptes Rendus de l’Acadmie de Sciences 72, 755–759 (1871)

Buli, J., Xing, Y.: Local discontinuous Galerkin methods for the Boussinesq coupled BBM system. J. Sci. Comput. 75, 536–559 (2018)

Burtea, C., Courtès, C.: Discrete energy estimates for the abcd-systems. Commun. Math. Sci. 17, 243–298 (2019)

Ciarlet, P.: The Finite Element Method for Elliptic Problem. North Holland, USA (1975)

Chen, M.: Exact traveling-wave solutions to bidirectional wave equations. Int. J. Theor. Phys. 37, 1547–1567 (1998)

Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn B., Karniadakis G.,Shu C.-W., eds. Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, Part I: Overview, vol. 11, pp. 3–50 Springer, Berlin, Heidelberg (2000)

Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

Hufford, C., Xing, Y.: Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg-de Vries equation. J. Comput. Appl. Math. 255, 441–455 (2014)

Karakashian, O., Xing, Y.: A posteriori error estimates for conservative local discontinuous Galerkin methods for the generalized Korteweg-de Vries equation. Commun. Comput. Phys. 20, 250–278 (2016)

Li, X., Xing, Y., Chou, C.-S.: Optimal energy conserving and energy dissipative local discontinuous Galerkin methods for the Benjamin-Bona-Mahony equation. J. Sci. Comput. 83, 17 (2020)

Li, X., Sun, W., Xing, Y., Chou, C.-S.: Energy conserving local discontinuous Galerkin methods for the improved Boussinesq equation. Journal of Computational Physics 401, 109002 (2020)

Luo, J., Shu, C.-W., Zhang, Q.: A priori error estimates to smooth solutions of the third order Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. ESAIM: M2AN 49, 991–1018 (2015)

Peregrine, D.H.: Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330 (1966)

Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805–3822 (2007)

Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

Xu, Y., Shu, C.-W.: Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)