Local Cohomology Annihilators and Macaulayfication

Nguyen Tu Cuong1, Đoàn Trung Cường1
1Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aberbach, I.M.: Arithmetic Macaulayfications using ideals of dimension one. Ill. J. Math. 40(3), 518–526 (1996)

Aberbach, I.M., Huneke, C., Smith, K.E.: A tight closure approach to arithmetic Macaulayfication. Ill. J. Math. 40(2), 310–329 (1996)

Bourbaki, N.: Élément de Mathematique: Algèbre Commutative. Chapitres 1 à 4. Springer-Verlag, Berlin-Heidelberg-New York (2006)

Brodmann, M.: Two types of birational models. Comment. Math. Helv. 58, 388–415 (1983)

Brodmann, M.: A few remarks on “Macaulayfication” of sheaves. Preprint

Chan, C.Y.J., Cumming, C., Hà, H.T.: Cohen-Macaulay multigraded modules. Ill. J. Math. 52(4), 1147–1163 (2008)

Cuong, D.T.: p-standard systems of parameters, localizations and local cohomology modules. In: Proceedings of the 3th Japan-Vietnam joint seminar on Commutative Algebra, pp 66–78. Hanoi (2007)

Cuong, N.T.: On the dimension of the non-Cohen-Macaluay locus of local rings admitting dualizing complexes. Math. Proc. Cambridge Philos. Soc. 109(2), 479–488 (1991)

Cuong, N.T.: p-standard systems of parameters and p-standard ideals in local rings. Acta Math. Vietnam.20(1), 145–161 (1995)

Cuong, N.T.: A theory of polynomial type and p-standard systems of parameters in commutative algebra. Habilitation, Hanoi (1995) (in Vietnamese)

Cuong, N.T., Cuong, D.T.: dd-sequences and partial Euler-Poincaré characteristics of Koszul complex. J. Algebra Appl. 6(2), 207–231 (2007)

Cuong, N.T., Cuong, D.T.: On sequentially Cohen-Macaulay modules. Kodai. Math. J. 30, 409–428 (2007)

Cuong, N.T., Cuong, D.T.: On the structure of sequentially generalized Cohen-Macaulay modules. J. Algebra 317, 714–742 (2007)

Cuong, N.T., Schenzel, P., Trung, N.V.: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85, 57–73 (1978)

Cutkosky, S.D., Tai, H.H.: Arithmetic Macaulayfication of projective schemes. J. Pure Appl. Algebra 201(1–3), 49–61 (2005)

Faltings, G.: Über Macaulayfizierung. Math. Ann. 238, 175–192 (1978)

Faltings, G.: Der Endlichkeitssatz in der lokalen Kohomologie. Math. Ann. 255 (1), 45–56 (1981)

Ferrand, D., Raynaud, M.: Fibres formelles d’un anneau local Noetherien. Ann. Sc. Ecole Norm. Sup. 3, 295–311 (1970)

Goto, S.: On the Cohen-Macaulayfication of certain Buchsbaum rings. Nagoya Math. J. 80, 107–116 (1980)

Goto, S., Yamagishi, K.: The theory of unconditioned strong d-sequences and modules of finite local cohomology, preprint (unpublished)

Grothendieck, A.: Élément de Géométrie Algébrique (EGA IV.2). Publ. I.H.E.S 24(2) (1965)

Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. 79(2), 109–203 and 205–326 (1964)

Huneke, C.: Theory of d-sequences and powers of ideals. Adv. Math. 46, 249–279 (1982)

Huneke, C.: Uniform bounds in Noetherian rings. Invent. Math. 107, 203–223 (1992)

Hyry, E.: The diagonal subring and the Cohen-Macaulay property of a multigraded ring. Trans. Am. Math. Soc. 351(6), 2213–2232 (1999)

Kawasaki, T.: On Macaulayfication of Noetherian schemes. Trans. Am. Math. Soc. 352(6), 2517–2552 (2000)

Kawasaki, T.: On arithmetic Macaulayfication of local rings. Trans. Am. Math. Soc. 354(1), 123–149 (2002)

Kawasaki, T.: Finiteness of Cousin cohomologies. Trans. Am. Math. Soc. 360 (5), 2709–2739 (2007)

Kurano, K.: On Macaulayfication obtained by a blow-up whose center is an equi-multiple ideal. With an appendix by Kikumichi Yamagishi. J. Algebra 190(2), 405–434 (1997)

Matsumura, H.: Commutative Ring Theory. Cambridge University Press (1986)

Mordasini, F.: On Macaulayfication of sheaves. Manuscripta Math. 99(4), 443–464 (1999)

Schenzel, P.: Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe. Lecture Notes in Math, vol. 907. Springer-Verlag, Berlin- Heidelberg- New York (1982)

Schenzel, P.: Standard system of parameters and their blowing-up rings. J. Reine Angew. Math. 344, 201–220 (1983)

Tai, H.H., Trung, N.V.: Asymptotic behaviour of arithmetically Cohen-Macaulay blow-ups. Trans. Am. Math. Soc. 357(9), 3655–3672 (2005)

Trung, N.V.: Toward a theory of generalized Cohen-Macaulay modules. Nagoya Math. J. 102, 1–49 (1986)

Zhou, C.: Uniform annihilators of local cohomology. J. Algebra 305, 585–602 (2006)