Local Cohomology Annihilators and Macaulayfication
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aberbach, I.M.: Arithmetic Macaulayfications using ideals of dimension one. Ill. J. Math. 40(3), 518–526 (1996)
Aberbach, I.M., Huneke, C., Smith, K.E.: A tight closure approach to arithmetic Macaulayfication. Ill. J. Math. 40(2), 310–329 (1996)
Bourbaki, N.: Élément de Mathematique: Algèbre Commutative. Chapitres 1 à 4. Springer-Verlag, Berlin-Heidelberg-New York (2006)
Brodmann, M.: A few remarks on “Macaulayfication” of sheaves. Preprint
Chan, C.Y.J., Cumming, C., Hà, H.T.: Cohen-Macaulay multigraded modules. Ill. J. Math. 52(4), 1147–1163 (2008)
Cuong, D.T.: p-standard systems of parameters, localizations and local cohomology modules. In: Proceedings of the 3th Japan-Vietnam joint seminar on Commutative Algebra, pp 66–78. Hanoi (2007)
Cuong, N.T.: On the dimension of the non-Cohen-Macaluay locus of local rings admitting dualizing complexes. Math. Proc. Cambridge Philos. Soc. 109(2), 479–488 (1991)
Cuong, N.T.: p-standard systems of parameters and p-standard ideals in local rings. Acta Math. Vietnam.20(1), 145–161 (1995)
Cuong, N.T.: A theory of polynomial type and p-standard systems of parameters in commutative algebra. Habilitation, Hanoi (1995) (in Vietnamese)
Cuong, N.T., Cuong, D.T.: dd-sequences and partial Euler-Poincaré characteristics of Koszul complex. J. Algebra Appl. 6(2), 207–231 (2007)
Cuong, N.T., Cuong, D.T.: On sequentially Cohen-Macaulay modules. Kodai. Math. J. 30, 409–428 (2007)
Cuong, N.T., Cuong, D.T.: On the structure of sequentially generalized Cohen-Macaulay modules. J. Algebra 317, 714–742 (2007)
Cuong, N.T., Schenzel, P., Trung, N.V.: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85, 57–73 (1978)
Cutkosky, S.D., Tai, H.H.: Arithmetic Macaulayfication of projective schemes. J. Pure Appl. Algebra 201(1–3), 49–61 (2005)
Ferrand, D., Raynaud, M.: Fibres formelles d’un anneau local Noetherien. Ann. Sc. Ecole Norm. Sup. 3, 295–311 (1970)
Goto, S.: On the Cohen-Macaulayfication of certain Buchsbaum rings. Nagoya Math. J. 80, 107–116 (1980)
Goto, S., Yamagishi, K.: The theory of unconditioned strong d-sequences and modules of finite local cohomology, preprint (unpublished)
Grothendieck, A.: Élément de Géométrie Algébrique (EGA IV.2). Publ. I.H.E.S 24(2) (1965)
Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. 79(2), 109–203 and 205–326 (1964)
Hyry, E.: The diagonal subring and the Cohen-Macaulay property of a multigraded ring. Trans. Am. Math. Soc. 351(6), 2213–2232 (1999)
Kawasaki, T.: On Macaulayfication of Noetherian schemes. Trans. Am. Math. Soc. 352(6), 2517–2552 (2000)
Kawasaki, T.: On arithmetic Macaulayfication of local rings. Trans. Am. Math. Soc. 354(1), 123–149 (2002)
Kurano, K.: On Macaulayfication obtained by a blow-up whose center is an equi-multiple ideal. With an appendix by Kikumichi Yamagishi. J. Algebra 190(2), 405–434 (1997)
Schenzel, P.: Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe. Lecture Notes in Math, vol. 907. Springer-Verlag, Berlin- Heidelberg- New York (1982)
Schenzel, P.: Standard system of parameters and their blowing-up rings. J. Reine Angew. Math. 344, 201–220 (1983)
Tai, H.H., Trung, N.V.: Asymptotic behaviour of arithmetically Cohen-Macaulay blow-ups. Trans. Am. Math. Soc. 357(9), 3655–3672 (2005)
Trung, N.V.: Toward a theory of generalized Cohen-Macaulay modules. Nagoya Math. J. 102, 1–49 (1986)